Journal of Low Temperature Physics

, Volume 113, Issue 3–4, pp 573–578

Normal Fluid Velocity Profile and Transition from T-1 to T-2 State of Superfluid Turbulence

  • David J. Melotte
  • Carlo F. Barenghi
Article

Abstract

It has been known for many years that in a circular counterflow pipe there exist two different states of turbulence of helium II: the T-1 state, which appears at low values of heat flux, and the T-2 state, which appears suddenly at higher heat flux and is characterized by a much higher density of quantized vortex lines. Until now the nature of the two turbulent states has been a mystery. To understand this problem we have addressed the issue of the velocity profile of the normal fluid and its stability. The computed critical heat flux of the transition from the T-1 state to the T-2 state is found to be in good agreement with the observations. The result indicates that in the T-1 state the superfluid is turbulent but the normal fluid is still laminar. The T-1 to T-2 transition corresponds to the onset of normal fluid turbulence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J.T. Tough, in Progress in Low Temperature Physics, Vol. VIII, ed. D.F. Brewer, (North-Holland, Amsterdam, 1982), page 133.Google Scholar
  2. 2.
    W.F. Vinen, Proc. Roy. Soc. A 240, 114 (1957); 240, 128 (1957); 242, 493 (1957) and 243, 400 (1957).Google Scholar
  3. 3.
    K.W. Schwarz, Phys. Rev. Lett. 49, 283 (1982); Phys. Rev. B 31, 5782 (1985) and 38, 2398 (1988); Phys. Rev. Lett. 71, 259 (1993).Google Scholar
  4. 4.
    D.D. Awschalom, F.P. Milliken and K.W. Schwarz, Phys. Rev. Lett. 53, 1372 (1984).Google Scholar
  5. 5.
    L.B. Opatowsky and J.T. Tough, Phys. Rev. B 24, 5420 (1981).Google Scholar
  6. 6.
    D.J. Melotte, Ph.D. thesis, University of Newcastle (1998).Google Scholar
  7. 7.
    R, G. K. Aarts and A.T.A.M. deWaele, Phys. Rev. B 50, 10069 (1994).Google Scholar
  8. 8.
    D.C. Samuels, Phys. Rev. B 46, 11714 (1992).Google Scholar
  9. 9.
    C.F. Barenghi, D.C. Samuels, G.H. Bauer and R.J. Donnelly, Phys. Fluids 9, 2631 (1997).Google Scholar
  10. 10.
    C.F. Barenghi, R.J. Donnelly and W.F. Vinen, Low Temp. Phys. 52, 189 (1983).Google Scholar
  11. 11.
    J.F. Kafkalidis, G. Klinich III and J.T. Tough, Phys. Rev. 50, 15909 (1994); G. Klinich, J.K. Kafkalidis and Tough, J. Low Temp. Phys. 107, 327 (1997).Google Scholar
  12. 12.
    C.F. Barenghi and C.A. Jones, J. Fluid Mech. 197, 551 (1988).Google Scholar
  13. 13.
    D.J. Melotte and C.F. Barenghi, to be published in Phys.Rev. Letters (1998).Google Scholar
  14. 14.
    D.R. Ladner, R.K. Childers and J.T. Tough, Phys. Rev. B 13, 2918 (1976).Google Scholar
  15. 15.
    K.P. Martin and J.T. Tough, Phys. Rev. B 27, 2788 (1981).Google Scholar
  16. 16.
    M.P. de Goeje & H. van Beelen, Physica B 133 109 (1985).Google Scholar
  17. 17.
    G. Marees & H. van Beelen, Physica B 27 2788 (1985).Google Scholar
  18. 18.
    D. Griswold, C.P. Lorenson & J.T. Tough, Phys. Rev. B 35 3149 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • David J. Melotte
    • 1
  • Carlo F. Barenghi
    • 1
  1. 1.Department of MathematicsUniversity of Newcastle upon TyneNewcastle upon TyneEngland

Personalised recommendations