Neurochemical Research

, Volume 24, Issue 4, pp 521–535

X-Linked Adrenoleukodystrophy: Genes, Mutations, and Phenotypes

  • Kirby D. Smith
  • Stephan Kemp
  • Lelita T. Braiterman
  • Jyh-Feng Lu
  • He-Ming Wei
  • Michael Geraghty
  • Gail Stetten
  • James S. Bergin
  • Jonathan Pevsner
  • Paul A. Watkins
Article

Abstract

X-linked adrenoleukodystrophy (X-ALD) is a complex and perplexing neurodegenerative disorder. The metabolic abnormality, elevated levels of very long-chain fatty acids in tissues and plasma, and the biochemical defect, reduced peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity, are ubiquitous features of the disease. However, clinical manifestations are highly variable with regard to time of onset, site of initial pathology and rate of progression. In addition, the abnormal gene in X-ALD is not the gene for VLCS. Rather, it encodes a peroxisomal membrane protein with homology to the ATP-binding cassette (ABC) transmembrane transporter superfamily of proteins. The X-ALD protein (ALDP) is closely related to three other peroxisomal membrane ABC proteins. In this report we summarize all known X-ALD mutations and establish the lack of an X-ALD genotype/phenotype correlation. We compare the evolutionary relationships among peroxisomal ABC proteins, demonstrate that ALDP forms homodimers with itself and heterodimers with other peroxisomal ABC proteins and present cDNA complementation studies suggesting that the peroxisomal ABC proteins have overlapping functions. We also establish that there are at least two peroxisomal VLCS activities, one that is ALDP dependent and one that is ALDP independent. Finally, we discuss variable expression of the peroxisomal ABC proteins and ALDP independent VLCS in relation to the variable clinical presentations of X-ALD.

Adrenoleukodystrophy peroxisomes ABC transporters mutations genotype/phenotype VLCS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Moser, H.W., Smith, K.D., and Moser, A.B. 1994. X-linked Adrenoleukodystrophy. Pages 2325-49, in Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D. (eds). The Metabolic and Molecular Basis of Inherited Disease, Seventh Edition. New York: McGraw Hill.Google Scholar
  2. 2.
    Poulos, A., Singh, H., Paton, B., Sharp, P., and Derwas, N. 1986. Accumulation and defective β-oxidation of very long chain fatty acids in Zellweger's syndrome, adrenoleukodystrophy and Refsum's disease variants. Clin. Genet. 29:397-408.Google Scholar
  3. 3.
    Singh, I., Moser, A.B., Goldfischer, S., and Moser, H.W. 1984. Lignoceric acid is oxidized in the peroxisomes: Implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc. Natl. Acad. Sci. USA 81:4203-7.Google Scholar
  4. 4.
    Wanders, R.J.A, van Roermond, C.W.T, van Wijland, M.J.A, Nijenhuis, A.A, Tromp, A., Schutgens, R.B.H., Brouwer-Kelder, E.M., Schram, A.W., Tager, J.M., van den Bosch, H., and Schalkwijk, C. 1987. X-linked adrenoleukodystrophy: Defective peroxisomal oxidation of very long chain fatty acids but not of very long chain fatty acyl-CoA esters. Clin. Chim. Acta. 165:321-9.Google Scholar
  5. 5.
    Singh, I., Moser, A.B., Moser, H.W., and Kishimoto, Y. 1984. Adrenoleukodystrophy: Impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts and amniocytes. Pediatr. Res. 18(3):286-90.Google Scholar
  6. 6.
    Lazo, O., Contreras, M., Bhushan, A., Stanley, W., and Singh, I. 1989. Adrenoleukodystrophy: Impaired oxidation of fatty acids due to peroxisomal lignoceroyl-CoA ligase deficiency. Arch. Biochem. Biophys. 270(2):722-8.Google Scholar
  7. 7.
    Wanders, R.J.A., van Roermund, C.W.T., van Wijland, M.J.A., Schutgens, R.B.H., van deb Bosch, H., Schram, A.W., and Tager, J.M. 1988. Direct evidence that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids. Biochem. Biophys. Res. Commun. 153:618-24.Google Scholar
  8. 8.
    Mosser, J., Douar, A.-M., Sarde, C.-O., Kioschis, P., Feil, R., Moser, H., Poustka, A.-M., Mandel, J.-M., and Aubourg, P. 1993. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361:726-30.Google Scholar
  9. 9.
    Uchida, Y., Kondo, N., Orii, T., and Hashimoto, T. 1996. Purification and properties of rat liver peroxisomal very long chain Acyl-CoA synthetase. J. Biochem. 119:565-71.Google Scholar
  10. 10.
    Uchiyama, A., Aoyama, T., Kamijo, K., Uchida, Y., Kondo, N., Orii, T., and Hashimoto, T. 1996. Molecular cloning of cDNA encoding rat very long chain acyl-CoA synthetase. J. Biol. Chem. 271(48):30360-5.Google Scholar
  11. 11.
    Higgins, C.F. 1992. ABC transporters: From microorganisms to man. Annu. Rev. Cell. Biol. 8:67-113.Google Scholar
  12. 12.
    Mosser, J., Lutz, Y., Stoeckel, M.E., Sarde, C.-O., Kretz, C., Douar, A.M., Lopez, J., Aubourg, P., and Mandel, J.L. 1994. The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum. Mol. Genet. 3(2):265-71.Google Scholar
  13. 13.
    Watkins, P.A., Gould, S.J., Smith, M.A., Braiterman, L.T., Wei, H.M., Kok, F., Moser, A.B., Moser, H.W., and Smith, K.D. 1995. Altered expression of ALDP in X-linked adrenoleukodystrophy. Am. J. Hum. Genet. 57:292-301.Google Scholar
  14. 14.
    Cartier, N., Lopez, J., Moullier, P., Rocchiccioli, F., Rolland, M.-O., Jorge, P., Mosser, J., Mandel, J.-M., Bougneres, P.-F., Danos, O., and Aubourg, P. 1995. Retroviral-mediated gene transfer corrects very-long-chain fatty acid metabolism in adrenoleukodystrophy fibroblasts. Proc. Natl. Acad. Aci. USA 92:1674-8.Google Scholar
  15. 15.
    Braiterman, L.T., Zheng, S., Watkins, P.A., Geraghty, M.T., Johnson, G., McGuinness, M.C., Moser, A.B., and Smith, K.D. 1998. Suppression of peroxisomal membrane protein defects by peroxisomal ATP binding cassette (ABC) proteins. Hum. Molec. Genet. 7(2):239-47.Google Scholar
  16. 16.
    Kamijo, K., Taketani, S., Yokota, S., Osumi, T., and Hashimoto, T. 1990. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J. Biol. Chem. 265(8):4534-40.Google Scholar
  17. 17.
    Gartner, J., Moser, H., and Valle, D. 1992. Mutations in the 70K peroxisomal membrane protein gene in Zellweger syndrome. Nature. Genet. 1:16-23.Google Scholar
  18. 18.
    Lombard-Platet, G., Savary, S., Sarde, C.-O., Mandel, J.-L., and Chimini, G. 1996. A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Proc. Natl. Acad. Sci. USA 93:1265-9.Google Scholar
  19. 19.
    Shani, N., Jimenez-Sanchez, G., Steel, G., Dean, M., and Valle, D. 1997. Identification of a fourth half ABC transporter in the human peroxisomal membrane. Hum. Mol. Genet. 6(11):1925-31.Google Scholar
  20. 20.
    Sarde, C.-O., Mosser, J., Kioschis, P., Kretz, C., Vicaire, S., Aubourg, P., Poustka, A., and Mandel, J.L. 1994. Genomic organization of the adrenoleukodystrophy gene. Genomics. 22:13-20.Google Scholar
  21. 21.
    Cartier, N., Sarde, C.O., Douar, A.M., Mosser, J., Mandel, J.L., and Aubourg, P. 1993. Abnormal messenger RNA expression and a missense mutation in patients with X-linked adrenoleukodystrophy. Hum. Mol. Genet. 2:1949-51.Google Scholar
  22. 22.
    Barcelo, A., Giros, M., Albiach, V.J., Vaquerizo, J., Pampols, T., and Estivill, X. 1996. Identification of two new nonsense mutations (Q311X and W326X) in exon 2 of the adrenoleukodystrophy (ALD) gene. Hum. Mutat. 8:286-7.Google Scholar
  23. 23.
    Fanen, P., Guidoux, S., Sarde, C.O., Mandel, J.L., Goossens, M., and Aubourg, P. 1994. Identification of mutations in the putative ATP-binding domain of the adrenoleukodystrophy gene. J. Clin. Invest. 94:516-20.Google Scholar
  24. 24.
    Fuchs, S., Sarde, C.O., Wedemann, H., Schwinger, E., Mandel, J. L., and Gal, A. 1994. Missense mutations are frequent in the gene for X-chromosomal adrenoleukodystrophy (ALD). Hum. Mol. Genet. 3(10):1903-5.Google Scholar
  25. 25.
    Kemp, S., Ligtenberg, J.L., van Geel, B.M., Barth, P.G., Wolterman, R.A., Schoute, F., Sarde, C.-O., Mandel, J.-L., van Oost, B.A., and Bolhuis, P.A. 1994. Identification of a two base pair deletion in five unrelated families with adrenoleukodystrophy: A possible hot spot for mutations. Biochem. Biophys. Res. Commun. 202(2):647-53.Google Scholar
  26. 26.
    Koike, R., Onodera, O., Tabe, H., Kaneko, K., Miyatake, T., Iwasaki, S., Nakano, M., Shizuma, N., Ikeguchi, K., Nishizawa, M., Mosser, J., Sarde, C.O., and Tsuji, S. 1995. Partial deletions of putative adrenoleukodystrophy (ALD) gene in Japanese ALD patients. Hum. Mutat. 6:263-7.Google Scholar
  27. 27.
    Uchiyama, A., Suzuki, Y., Song, X.Q., Fukao, T., Imamura, A., Tomatsu, S., Shimozawa, N., and et al. 1994. Identification of a nonsense mutation in ALD protein cDNA from a patient with adrenoleukodystrophy. Biochem. Biophys. Res. Commun. 198:632-6.Google Scholar
  28. 28.
    Berger, J., Molzer, B., Fae, I., and Bernheimer, H. 1994. X-linked adrenoleukodystrophy (ALD): A novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. Biochem. Biophys. Res. Commun. 205:1638-43.Google Scholar
  29. 29.
    Braun, A., Ambach, H., Kammerer, S., Rolinski, B., Stockler, S., Rabl, W., Gartner, J., Zierz, S., and Roscher, A.A. 1995. Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes. Am. J. Hum. Genet. 56:854-61.Google Scholar
  30. 30.
    Kemp, S., Ligtenberg, M.J.L., van Geel, B.M., Barth, P.G., Sarde, C.O., van Oost, B.A., and Bolhuis, P.A. 1995. Two intronic mutations in the adrenoleukodystrophy gene. Hum. Mutat. 6:272-3.Google Scholar
  31. 31.
    Kok, F., Neumann, S., Sarde, C.-O., Zheng, S., Wu, K.-H., Wei, H.-M., Bergin, J., Watkins, P.A., Gould, S., Sack, G., Moser, H., Mandel, J.-L., and Smith, K.D. 1995. Mutational analysis of patients with X-linked adrenoleukodystrophy. Hum. Mutat. 6:104-15.Google Scholar
  32. 32.
    Ligtenberg, M.J.L., Kemp, S., Sarde, C.O., van Geel, B., Kleijer, W.J., Barth, P.J., Mandel, J.L., van Oost, A., and Bolhuis, P.A. 1995. Spectrum of mutations in the gene encoding the adrenoleukodystrophy protein. Am. J. Hum. Genet. 56:44-50.Google Scholar
  33. 33.
    Matsumoto, T., Kondoh, T., Masuzaki, H., Harada, N., Matsusaka, T., Kinochita, E., Takeo, G., Tsujihata, M., Suzuki, Y., and Tsuji, Y. 1994. A point mutation at the ATP-binding region of the ALD gene in a family with X-linked adrenoleukodystrophy. Jpn. J. Hum. Genet. 39:345-51.Google Scholar
  34. 34.
    Song, X.Q., Fukao, T., Suzuki, Y., Imamura, A., Uchiyama, A., Shimozawa, N., Kondo, N., and Orii, T. 1995. Identification of a novel frameshift mutation in a Japanese adrenoleukodystrophy patient. Hum. Mol. Genet. 4:1093-4.Google Scholar
  35. 35.
    Yasutake, T., Tamada, T., Furuya, H., Shinnoh, N., Goto, I., and Kobayashi, T. 1995. Molecular analysis of X-linked adrenoleukodystrophy patients. J. Neurol. Sci. 131:58-64.Google Scholar
  36. 36.
    Feigenbaum, V., Lombard-Platet, G., Guidoux, S., Sarde, C., Mandel, J.L., and Aubourg, P. 1996. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy. Am. J. Hum. Genet. 58:1135-44.Google Scholar
  37. 37.
    Krasemann, E.W., Meier, V., Korenke, G.C., Hunneman, D.H., and Hanefeld, F. 1996. Identification of mutations in the ALD-gene of 20 families with adrenoleukodystrophy/adrenomyeloneuropathy. Hum. Genet. 97:194-7.Google Scholar
  38. 38.
    Ueyama, H., Yamano, T., Shimada, M., and Ohkubo, I. 1996. Novel missense and frameshift mutations in the adrenoleukodystrophy gene. Jpn. J. Hum. Genet. 41:407-11.Google Scholar
  39. 39.
    Imamura, A., Suzuki, Y., Song, X.Q., Fukao, T., Uchiyama, A., Shimozawa, N., Kamijo, K., Hashimoto, T., Orii, T., and Kondo, N. 1997. Two novel missense mutations in the ATP-binding domain of the adrenoleukodystrophy gene: Immunoblotting and immunocytological study of two patients. Clin. Genet. 51:322-5.Google Scholar
  40. 40.
    Korenke, G.C., Krasemann, E., Meier, V., Beuche, W., Hunneman, D.H., and Hanefeld, F. 1998. First missense mutation (W679R) in exon 10 of the adrenoleukodystrophy gene in siblings with adrenomyeloneuropathy. Hum Mutat 1(Suppl.):S204-S206.Google Scholar
  41. 41.
    Holzinger, A., Maier, E., Stockler-Ipsiroglu, S., Braun, A., and Roscher, A.A. 1998. Characterization of a novel mutation in exon 10 of the adrenoleukodystrophy gene. Clin. Genet. 53:482-7.Google Scholar
  42. 42.
    Cooper, D.N., Krawczak, M., and Antonarakis, S.E. 1995. The nature and mechanisms of human gene mutations. Pages 259-91, in Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., and (eds). The Metabolic and Molecular Basis of Inherited Diseases, Seventh Edition. New York: McGraw-Hill.Google Scholar
  43. 43.
    Shani, N., Sapag, A., and Valle, D. 1996. Characterization and analysis of conserved motifs in a peroxisomal ATP-binding cassette transporter. J. Biol. Chem. 271:8725-30.Google Scholar
  44. 44.
    Kerppola, R.E., and Ames, G.F. 1992. Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. Comparison with other members of the family. J. Biol. Chem. 267(4):2329-36.Google Scholar
  45. 45.
    Saurin, W., Koster, W., and Dassa, E. 1994. Bacterial binding protein-dependent permeases: Characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol. Microbiol. 12(6):993-1004.Google Scholar
  46. 46.
    Barker, D., Schafer, M., and White, R. 1984. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 36:131-8.Google Scholar
  47. 47.
    Mosser, J., Sarde, C.O., Vicaire, S., Yates, J.R., and Mandel, J.L. 1994. A new human gene (DXS1357E) with ubiquitous expression, located in Xq28 adjacent to the adrenoleukodystrophy gene. Genomics 22:469-71.Google Scholar
  48. 48.
    Kemp, S., Mooyer, P.A.W., Bolhuis, P.A., van Geel, B.M., Mandel, J.L., Barth, P.G., Aubourg, P., and Wanders, R.J.A. 1996. ALDP expression in fibroblasts of patients with X-linked adrenoleukodystrophy. J. Inher. Metab. Dis. 19:667-74.Google Scholar
  49. 49.
    Decottignies, A. and Goffeau, A. 1997. Complete inventory of the yeast ABC proteins. Nature Genet. 15:137-45.Google Scholar
  50. 50.
    Taglicht, D. and Michaelis, S. 1998. Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Meth. Enzymol. 292:130-162.Google Scholar
  51. 51.
    Eichler, E.E., Budarf, M.L., Rocchi, M., Deaven, L.L., Doggett, N.A., Baldini, A., Nelson, D.L., and Mohrenweiser, H.W. 1997. Interchromosomal duplications of the adrenoleukodystrophy locus: A Phenomenon of pericentromeric plasticity. Hum. Molec. Genet. 6(7):991-1002.Google Scholar
  52. 52.
    Lu, J.-F., Lawler, A.M., Watkins, P.A., Powers, J.M., Moser, A.B., Moser, H.W., and Smith, K.D. 1997. A mouse model for X-linked adrenoleukodystrophy. Proc. Natl. Acad. Sci. USA 94:9366-71.Google Scholar
  53. 53.
    Valle, D. and Gartner, J. 1993. Penetrating the peroxisome. Nature 361:682-3.Google Scholar
  54. 54.
    Shani, N., Steel, G., Dean, M., and Valle, D. 1996. Four half ABC transporters may heterodimerize in the peroxisome membrane. Am. J. Hum. Genet. 59(4 (Suppl)):42A.Google Scholar
  55. 55.
    Spies, T. and DeMars, R. 1991. Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351:323-4.Google Scholar
  56. 56.
    Shani, N. and Valle, D. 1996. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc. Natl. Acad. Sci. USA 93:11901-6.Google Scholar
  57. 57.
    Fouquet, F., Zhou, J.M., Ralston, E., Murray, K., Troalen, F., Magal, E., Robain, O., Dubois-Dalcq, M., and Aubourg, P. 1997. Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiol. Dis. 3:271-85.Google Scholar
  58. 58.
    Philipson, L.H. and Steiner, D.F. 1995. Pas de deux or more: the sulfonylurea receptor and K+ channels. Science 268:372-3.Google Scholar
  59. 59.
    Al-Awqati, Q. 1995. Regulation of ion channels by ABC transporters that secrete ATP. Science 269:805-6.Google Scholar
  60. 60.
    Aguilar-Bryan, L., Nichols, C.G., Wechsler, S.W., Clement IV, J.P., Boyd III, A.E., Gonzalez, G., Herrera-Sosa, H., Nguy, K., Bryan, J., and Nelson, D.A. 1995. Cloning of the beta cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science 268:423-5.Google Scholar
  61. 61.
    Thomas, P.M., Cote, G.J., Wohilk, N., Haddad, B., Mathew, P.M., Rabi, W., Aguilar-Bryan, L., Gagel, R.F., and Bryan, J. 1995. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268:426-9.Google Scholar
  62. 62.
    Schwiebert, E.M., Egan, M.E., Hwang, T.-O., Fulmer, S.B., Allen, S.S., Cutting, G.R., and Guggino, W.B. 1995. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063-73.Google Scholar
  63. 63.
    Stutts, M.J., Canessa, C.M., Olsen, J.C., Hamrik, M., Cohn, J.A., Rossier, B.C., and Boucher, R.C. 1995. CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847-50.Google Scholar
  64. 64.
    Watkins, P.A., Lu, J.-F., Steinberg, S.J., Gould, S.J., Smith, K.D., and Braiterman, L.T. 1998. Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long chain fatty acyl-CoA sythetase activity and elevates intracellular very long chain fatty acid concentrations. J. Biol. Chem. 273:18210-18219.Google Scholar
  65. 65.
    Smith, K.D., Sack, G., Beaty, T., Bergin, A., Naidu, S., Moser, A., and Moser, H.W. 1991. A genetic basis for the multiple phenotypes of X-linked adrenoleukodystrophy. Am. J. Hum. Genet. 49:165.Google Scholar
  66. 66.
    Moser, H.W., Moser, A.B., Smith, K.D., Bergin, A., Borel, J., Shankroff, J., Stine, O.C., Merette, C., Ott, J., Krivit, W., and Shapiro, E. 1992. Adrenoleukodystrophy: Phenotypic variability: Implications for therapy. J. Inher. Metab. Dis. 15:645-64.Google Scholar
  67. 67.
    Maestri, N.E. and Beaty, T.H. 1992. Predictions of a 2-locus model for disease heterogeneity: Applications to adrenoleukodystrophy. Am. J. Hum. Genet. 44:576-82.Google Scholar
  68. 68.
    Migeon, B.R., Moser, H.W., Moser, A.B., Axelman, J., Sillence, D., and Norum, R.A. 1981. Adrenoleukodystrophy: Evidence for X-linkage, inactivation and selection favoring the mutant allele in heterozygous cells. Proc. Natl. Acad. Sci. USA 78:5066-70.Google Scholar
  69. 69.
    Gartner, J., Jimenez-Sanchez, G., Roerig, P., and Valle, D. 1998. Genomic organization of the 70-kDa peroxisomal membrane protein gene (PXMP1). Genomics 48(2):203-8.Google Scholar
  70. 70.
    Pinkel, D., Straume, T., and Gray, J.W. 1986. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. 83:2934-8.Google Scholar
  71. 71.
    Watkins, P.A., Ferrell, E.V., Pedersen, J.I., and Hoefler, G. 1991. Peroxisomal fatty acid beta-oxidation in HepG2 cells. Arch. Biochem. Biophys. 289(2):329-36.Google Scholar
  72. 72.
    Barcelo, A., Giros, M., Sarde, C.O., Martinez-Bermejo, X., Mandel, J.L., Pampols, T., and Estivill, X. 1994. Identification of a new framshift mutation (1801delAG) in the ALD gene. Hum. Mol. Genet. 3:1889-90.Google Scholar
  73. 73.
    Takano, H., Koika, R., Onodera, O., Sasaki, R., and Tsuji, S. 1998. Mutational analysis and genotype-phenotype correlation of 29 unrelated Japanese patients with X-linked adrenoleukodystrophy (ALD). Arch. Neurol.: in press.Google Scholar
  74. 74.
    Osaka, H., Sekiguchi, H., Inoue, K., Ikuta, K., Sakakihara, Y., Oka, A., Onishi, T., Miyakawa, T., Suzuki, K., Kimura, S., Kosaka, K., and Matsuyama, S. 1998. A novel mutation found in an adrenoleukodystrophy patient who underwent bone marrow transplantation. J. Inher. Metab. Dis. 21:162-6.Google Scholar
  75. 75.
    Holzinger, A., Kammerer, S., Berger, J., and Roscher, A.A. 1997. cDNA cloning and mRNA expression of the human adrenoleukodystrophy related protein (ALDRP), a peroxisomal ABC transporter. Biochem. Biophys. Res. Commun. 239(1):261-4.Google Scholar
  76. 76.
    Holzinger, A., Kammerer, S., and Roscher, A.A. 1997. Primary structure of human PMP69, a putative peroxisomal ABC-transporter. Biochem. Biophys. Res. Commun. 237(1):152-7.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Kirby D. Smith
    • 1
    • 2
    • 3
  • Stephan Kemp
    • 1
    • 2
  • Lelita T. Braiterman
    • 1
    • 2
  • Jyh-Feng Lu
    • 1
    • 2
    • 3
  • He-Ming Wei
    • 1
    • 2
  • Michael Geraghty
    • 2
    • 3
  • Gail Stetten
    • 2
    • 4
    • 3
  • James S. Bergin
    • 1
  • Jonathan Pevsner
    • 1
    • 2
  • Paul A. Watkins
    • 1
    • 2
  1. 1.The Kennedy Krieger InstituteUSA
  2. 2.Departments of PediatricsUSA
  3. 3.Institute of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimore
  4. 4.Gynecology and ObstetricsUSA

Personalised recommendations