Clinical & Experimental Metastasis

, Volume 20, Issue 1, pp 11–18

KISS1 metastasis suppression and emergent pathways

  • John F. Harms
  • Danny R. Welch
  • Mary E. Miele


Metastatic disease is the most critical impediment to cancer patient survival. However, comparatively little is known concerning the intricate pathways which govern the complex phenotypes associated with metastasis. The KISS1 metastasis suppressor gene inhibits metastasis in both in vivo melanoma and breast carcinoma models. Despite its clear physiological activity, the mechanism of KISS1 remains unclear. Recent identification of a 54 amino acid peptide of KISS1, termed metastin or kisspeptin-54, and its cognate G-protein coupled receptor (hOT7T175, AXOR12, GPR54) have provided additional clues and avenues of research. While studies have attributed KISS1 with modulation of NFκB regulation, experiments with metastin and its receptor implicate MAP kinase pathways and also suggest the potential of autocrine, paracrine and endocrine roles. Impacts on motility, chemotaxis, adhesion and invasion have each been documented in disparate cell lines and conflicting observations require resolution. Nevertheless, mounting clinical evidence, particularly the loss of KISS1 in metastases, correlates KISS1 and metastin receptor expression with human tumor progression. Together, the data substantiate roles for these molecules in metastasis regulation.

KISS1 metastin kisspeptin AXOR12 GPR54 chromosome 6 metastasis metastasis-suppressor gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailly M, Zebda N, Dore JF. Human melanoma metastasis related to specific adhesion with lung cells rather than direct growth stimulation. Anticancer Res 1994; 14(5A): 1791–9.Google Scholar
  2. 2.
    Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L (eds): Melanomas of skin. SEER Cancer Statistics Review, 1973-1998. Bethesda: National Cancer Institute, 2001.Google Scholar
  3. 3.
    Welch DR, Bisi JE, Miller BE et al. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int J Cancer 1991; 47(2): 227–37.Google Scholar
  4. 4.
    Miele ME, Robertson G, Lee JH et al. Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosomes 1 or 6. Mol Carcinog 1996; 15(4): 284–99.Google Scholar
  5. 5.
    Miele ME, Jewett MD, Goldberg SF et al. A human melanoma metastasis-suppressor locus maps to 6q16.3-q23. Int J Cancer 2000; 86(4): 524–8.Google Scholar
  6. 6.
    Welch DR, Chen P, Miele ME et al. Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 1994; 9(1): 255–62.Google Scholar
  7. 7.
    Lee JH, Welch DR. Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int J Cancer 1997; 71(6): 1035–44.Google Scholar
  8. 8.
    Lee JH, Miele ME, Hicks DJ et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 1996; 88(23): 1731–7.Google Scholar
  9. 9.
    Shirasaki F, Takata M, Hatta N et al. Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3-q23. Cancer Res 2001; 61(20): 7422–5.Google Scholar
  10. 10.
    Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res 1997; 57(12): 2384–7.Google Scholar
  11. 11.
    West A, Vojta PJ, Welch DR et al. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1). Genomics 1998; 54(1): 145–8.Google Scholar
  12. 12.
    Gualandi F, Morelli C, Pavan JV et al. Induction of senescence and control of tumorigenicity in BK virus transformed mouse cells by human chromosome 6. Genes Chromosomes Cancer 1994; 10(2): 77–84.Google Scholar
  13. 13.
    Morelli C, Sherratt T, Trabanelli C et al. Characterization of a 4-Mb region at chromosome 6q21 harboring a replicative senescence gene. Cancer Res 1997; 57(19): 4153–7.Google Scholar
  14. 14.
    Goldberg SF, Miele ME, Welch DR. VDUP1 mediates human melanoma metastasis suppression by chromosome 6. Proc Am Assoc Cancer Res 2002; 43: 138.Google Scholar
  15. 15.
    Junn E, Han SH, Im JY et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000; 164(12): 6287–95.Google Scholar
  16. 16.
    PROSITE. 2001.Google Scholar
  17. 17.
    SignalP v1.1. 2001.Google Scholar
  18. 18.
    PSORT. 2001.Google Scholar
  19. 19.
    PESTfind. 2001.Google Scholar
  20. 20.
    Ohtaki T, Shintani Y, Honda S et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001; 411(6837): 613–7.Google Scholar
  21. 21.
    Kotani M, Detheux M, Vandenbogaerde A et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276(37): 34631–6.Google Scholar
  22. 22.
    Muir AI, Chamberlain L, Elshourbagy NA et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 2001; 276(31): 28969–75.Google Scholar
  23. 23.
    Shi CS, Kehrl JH. PYK2 links G(q)alpha and G(13)alpha signaling to NF-kappa B activation. J Biol Chem 2001; 276(34): 31845–50.Google Scholar
  24. 24.
    Ringel MD, Hardy E, Bernet VJ et al. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J Clin Endocrinol Metab 2002; 87(5): 2399.Google Scholar
  25. 25.
    Yan C, Wang H, Boyd DD. KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha-induced block of p65/p50 nuclear translocation. J Biol Chem 2001; 276(2): 1164–72.Google Scholar
  26. 26.
    You J, Miele ME, Dong C et al. Suppression of human melanoma metastasis by introduction of chromosome 6 may be partially due to inhibition of motility, but not to inhibition of invasion. Biochem Biophys Res Commun 1995; 208(2): 476–84.Google Scholar
  27. 27.
    Strasberg RM, Welch DR, Rieber M. Suppression of C8161 melanoma metastatic ability by chromosome 6 induces differentiation-associated tyrosinase and decreases proliferation on adhesion-restrictive substrates mediated by overexpression of p21WAF1 and down-regulation of bcl-2 and cyclin D3. Biochem Biophys Res Commun 2001; 281(1): 159–65.Google Scholar
  28. 28.
    Hori A, Honda S, Asada M et al. Metastin suppresses the motility and growth of CHO cells transfected with its receptor. Biochem Biophys Res Commun 2001; 286(5): 958–63.Google Scholar
  29. 29.
    Goldberg SF, Harms JF, Quon K et al. Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin Exp Metastasis 1999; 17(7): 601–7.Google Scholar
  30. 30.
    Harms JF, Miele ME, Welch DR. Metastasis suppression of C8161 human melanoma cells by chromosome 6 appears to be organ specific. Proc Am Assoc Cancer Res 2002; 43: 138–9.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • John F. Harms
    • 1
  • Danny R. Welch
    • 1
    • 2
  • Mary E. Miele
    • 2
  1. 1.Jake Gittlen Cancer Research InstituteThe Pennsylvania State University College of MedicineHersheyUSA
  2. 2.Department of PathologyUniversity of Alabama – BirminghamBirminghamUSA

Personalised recommendations