Advertisement

Cellular and Molecular Neurobiology

, Volume 18, Issue 2, pp 231–247 | Cite as

Multifactorial Modulation of TRH Metabolism

  • P. Joseph-Bravo
  • R. M. Uribe
  • M. A. Vargas
  • L. Pérez-Martínez
  • T. Zoeller
  • J. L. Charli
Article

Abstract

1. Thyrotropin releasing hormone (TRH), synthesized in the paraventricular nucleus of the hypothalamus (PVN), is released in response to physiological stimuli through medianeminence nerve terminals to control thyrotropin or prolactin secretion from the pituitary.

2. Several events participate in the metabolism of this neuropeptide: regulation of TRH biosynthesis and release as well as modulation of its inactivation by the target cell.

3. Upon a physiological stimulus such as cold stress or suckling, TRH is released and levels of TRH mRNA increase in a fast and transient manner in the PVN; a concomitant increase in cfos is observed only with cold exposure.

4. Hypothalamic cell cultures incubated with cAMP or phorbol esters show a rise in TRH mRNA levels; dexamethasone produces a further increase at short incubation times.TRH mRNA are thus controlled by transsynaptic and hormonal influences.

5. Once TRH is released, it is inactivated by a narrow specificity ectoenzyme, pyroglu-tamyl peptidase II (PPII).

6. In adenohypophysis, PPII is subject to stringent control: positive by thyroid hormones and negative by TRH; other hypothalamic factors such as dopamine and somatostatin also influence its activity.

7. These combined approaches suggest that TRH action is modulated in a coordinate fashion.

thyrotropin releasing hormone (TRH) pryoglutamyl peptidase II paraventricular nucleus lactotroph convertases PC1 PC2 TRH mRNA neuroendocrine regulation glucocorticoids thyroid hormones suckling cold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, R. G. W., and Orci, L. (1988). A view of acidic intracellular compartments. J. Cell Biol. 106:539–543.Google Scholar
  2. Aragay, A. M., Katz, A., and Simon, M. I. (1992). The Gq and G11 proteins couple the thyrotropin-releasing hormone receptor to phospholipase C in GH3 rat pituitary cells. J. Biol. Chem. 267:24983–24988.Google Scholar
  3. Arancibia, S., Tapia-Arancibia, L., Assenmacher, I., and Astier, H. (1983). Direct evidence of short-term cold-induced TRH release in the median eminence of unanesthetized rats. Neuroendocrinology 37:225–228.Google Scholar
  4. Arancibia, S., Tapia-Arancibia, L., Astier, H., and Assenmacher, I. (1989). Physiological evidence for α1-adrenergic facilitatory control of the cold-induced TRH release in the rat, obtained by push-pull cannulation of the median eminence. Neurosci. Lett. 100:169–174.Google Scholar
  5. Arenander, A. T., and Herchman, H. R. (1993). Primary response gene expression in the nervous system. In Loughlin, S. E., and Fallon, J. H. (eds.), Neurotrophic Factors, Academic Press, New York, pp. 89–128.Google Scholar
  6. Barofsky, A.-L., Taylor, J., and Massari, V. J. (1983). Dorsal raphe-hypothalamic projections provide the stimulatory serotonergic input to suckling-induced prolactin release. Endocrinology 113:1894–1903.Google Scholar
  7. Bauer, K. (1976). Regulation of degradation of thyrotropin releasing hormone by thyroid hormones. Nature 259:591–593.Google Scholar
  8. Bauer, K. (1987). Adenohypophyseal degradation of thyrotropin releasing hormone regulated by thyroid hormones. Nature 330:375–377.Google Scholar
  9. Bauer, K. (1988). Degradation and biological inactivation of thyrotropin releasing hormone (TRH): Regulation of the membrane-bound TRH-degrading enzyme from rat anterior pituitary by estrogens and thyroid hormones. Biochimie 70:69–74.Google Scholar
  10. Bauer, K. (1994). Purification and characterization of the thyrotropin releasing hormone degrading ectoenzyme. Eur. J. Biochem. 224:387–396.Google Scholar
  11. Bauer, K., and Nowak, P. (1979). Characterization of a thyroliberin-degrading serum enzyme catalyzing the hydrolysis of thyroliberin at the pyroglutamyl-histidine bond. Eur. J. Biochem. 99:239–246.Google Scholar
  12. Bauer, K., Carmeliet, P., Schulz, M., Baes, M., and Denef, C. (1990). Regulation and cellular localization of the membrane bound thyrotropin-releasing hormone-degrading enzyme in primary cultures of neuronal, glial and adenohypophyseal cells. Endocrinology 127:1224–1233.Google Scholar
  13. Bhat, R. V., Tausk, F. A., Baraban, J. M., Mains, R. E., and Eipper, B. A. (1993). Rapid increases in peptide processing enzyme expression in hippocampal neurons. J. Neurochem. 61:1315–1322.Google Scholar
  14. Birch, N. P., Tracer, D. J., Hakes, D. J., and Loh, Y. P. (1991). Coordinate regulation of mRNA levels of pro-opiomelanocortin and the candidate processing enzymes PC2 and PC3, but not furin, in rat pituitary intermediate lobe. Biochem. Biophys. Res. Commun. 178:1311–1319.Google Scholar
  15. Boler, J., Enzmann, K., Bowers, C. Y., and Schally, A. V. (1969). The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline-amide. Biochem. Biophys. Res. Commun. 37:705–710.Google Scholar
  16. Bradley, D. J., Young, W. S., III, and Weinberger, C. (1989). Differential expression of α and β thyroid hormone receptor genes in rat brain and pituitary. Proc. Natl. Acad. Sci. USA 86:7250–7254.Google Scholar
  17. Braks, J. A. M., and Martens, G. J. M. (1994). 7B2 is a neuroendocrine chaperon that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78:263–273.Google Scholar
  18. Brunh, T. O., Taplin, J. H., and Jackson, I. M. D. (1991). Hypothyroidism reduces content and increases in vitro release of pro-thyrotropin-releasing hormone peptides from the median eminence. Neuroendocrinology 53:511–515.Google Scholar
  19. Bulant, M., Delfour, A., Vaudry, H., and Nicolas, P. (1988). Processing of thyrotropin releasing hormone prohormone generates pro-TRH-connecting peptides. J. Biol. Chem. 263:17189–17191.Google Scholar
  20. Bulant, M., Toussel, J. P., Astier, H., Nicolas, P., and Vaudry, H. (1990). Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates a biological active peptide, prepro-TRH-(160–169), which regulates TRH-induced thyrotropin secretion. Proc. Natl. Acad. Sci. USA 87:4439–4443.Google Scholar
  21. Burgus, R., Dunn, T., Desiderio, D., and Guillemin, R. (1969). Structure moleculaire du facteur hypothalamique hypophysiotrope TRF d'origine ovine: mise en évidence par spectrometrie de masse de la sequence PCA-His-Pro-NH2. C.R. Acad. Sci. (Paris) 269:1870–1873.Google Scholar
  22. Canonico, P. L., Judd, A. M., Koike, K., Valdenegro, C. A., and Macleod, R. M. (1986). Arachidonate stimulates prolactin release in vitro: A role for the fatty acid and its metabolites as intracellular regulator(s) in mammotrophs. Endocrinology 116:218–220.Google Scholar
  23. Charli, J. L., Ponce, G., Joseph-Bravo, P., and McKelvy, J. F. (1984). Accumulation of thyrotropin releasing hormone by rat hypothalamic slices. J. Neurochem. 42:981–986.Google Scholar
  24. Charli, J. L., Mendez, M., Joseph-Bravo, P., and Wilk, S. (1987). Specific inhibitors of pyroglutamyl peptidase I and prolyl endopeptidase do not change the in vitro release of TRH or its content in rodent brain. Neuropeptides 9:373–378.Google Scholar
  25. Charli, J. L., Cruz, C., Vargas, M., and Joseph-Bravo, P. (1988). The narrow specificity pyroglutamate aminopeptidase degrading TRH in brain is an ectoenzyme. Neurochem. Int. 13:237–242.Google Scholar
  26. Charli, J. L., Méndez, M., Vargas, M. A., Cisneros, M., Assai, M., Joseph-Bravo, P., and Wilk, S. (1989). Pyroglutamyl peptidase II inhibition specifically increases recovery of TRH released from rat brain slices. Neuropeptides 14:191–196.Google Scholar
  27. Charli, J. L., Cruz, C., Redondo, J. L., Guerra, C., and Joseph-Bravo, P. (1995). Homologous conditioned medium enhances expression of TRH in hypothalamic neurons in primary cultures. Dev. Brain Res. 89:155–160.Google Scholar
  28. Charli, J. L., Baeza, M. A., Uriostegui, B., and Joseph-Bravo, P. (1996). Rapid down regulation of adenohypophyseal pyroglutamyl peptidase II activity by arachidonic acid. 10th International Congress of Endocrinology, San Francisco, CA.Google Scholar
  29. Cockle, A. M., and Smyth, D. G. (1987). Specific processing of the thyrotropin releasing prohormone in rat brain and spinal cord. Eur. J. Biochem. 165:693–698.Google Scholar
  30. Covarrubias, L., Uribe, R. M., Méndez, M., Charli, J. L., and Joseph-Bravo, P. (1988). Neuronal TRH synthesis: Developmental and circadian TRH mRNA levels. Biochem. Biophys. Res. Commun. 151:615–622.Google Scholar
  31. Covarrubias, L., Redondo, J. L., Vargas, M. A., Uribe, R. M., Méndez, M., Joseph-Bravo, P., and Charli, J. L. (1994). In vitro TRH release from hypothalamus slices varies during the diurnal cycle. Neurochem. Res. 19:845–850.Google Scholar
  32. Cruz, C., Charli, J. L., Vargas, M. A., and Joseph-Bravo, P. (1991). Neuronal localization of pyroglutamate aminopeptidase II in primary cultures of fetal mouse brain. J. Neurochem. 6:1594–1601.Google Scholar
  33. Czekay, G., and Bauer, K. (1993). Identification of the thyrotropin releasing hormone-degrading ectoenzyme as a metallopeptidase. J. Biochem. 290:921–926.Google Scholar
  34. Davidson, H. W., Rhodes, C. J., and Hutton, J. C. (1988). Intraorganellar calcium and pH control of proinsulin cleavage in the pancreatic cell via two distinct site-specific endopeptidases. Nature 333:93–96.Google Scholar
  35. Day, R., Schafer, M. K. H., Watson, S. J., Chrétien, M., and Seidah, N. G. (1992). Distribution and regulation of the prohormone convertases PC1 and PC2 in rat pituitary. Mol. Endocrinol. 6:485–497.Google Scholar
  36. De Gortari, P., Fernández-Guardiola, A., Martínez, A., Cisneros, M., and Joseph-Bravo, P. (1995). Changes in TRH and its degrading enzyme pyroglutamate peptidase II, during the development of kindling. Brain Res. 679:144–150.Google Scholar
  37. De Greef, W. J., and Visser, T. J. (1981). Evidence for involvement of hypothalamic dopamine and thyrotrophin-releasing hormone in suckling-induced release of prolactin. J. Endocrinol. 91:213–223.Google Scholar
  38. Desarathy, Y., and Fanburg, B. L. (1991). Involvement of second messenger systems in stimulation of angiotensin converting enzyme of bovine endothelial cells. J. Cell. Physiol. 148:327–335.Google Scholar
  39. Dyess, E. M., Segerson, T. P., Liposits, Z., Paull, W. D., Kaplan, M. M., Wu, P., Jackson, I. M. D., and Lechan, R. M. (1988). Triiodothyronine exerts direct cell-specific regulation of thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus. Endocrinology 123:2291–2297.Google Scholar
  40. Elmore, M. A., Griffiths, E. C., O'Connor, B., and O'Cuinn, G. (1990). Further characterization of the substrate specificity of a TRH hydrolysing pyroglutamate aminopeptidase from guinea-pig brain. Neuropeptides 15:31–36.Google Scholar
  41. Erdos, E. G., Wagner, B., Harbury, C. B., Painter, R. G., Skidgel, R. A. N., and Fa, X. G. (1989). Down regulation and inactivation of neutral endopeptidase 24.11 enkephalinase in human neutrophils. J. Biol. Chem. 264:14519–14523.Google Scholar
  42. Faivre-Bauman, A., Loudes, C., Barret, A., Tixier-Vidal, A., and Bauer, K. (1986). Possible role of neuropeptide degrading enzyme on thyroliberin secretion in fetal hypothalamic cultures grown in serum free medium. Neuropeptides 7:125–138.Google Scholar
  43. Faivre-Bauman, A., Loudes, C., Barret, A., Patte, C., and Tixier-Vidal, A. (1988). Ontogenesis of peptidylglycyl α-amidation activity in the mouse hypothalamus in vivo and in serum-free medium cultures. Relation with thyroliberin (TRH) accumulation and release in vitro. Dev. Brain Res. 40:261–267.Google Scholar
  44. Franks, S., Mason, H. D., Shennan, K. I. J., and Sheppard, M. C. (1984). Stimulation of prolactin secretion by oestradiol in the rat is associated with increased hypothalamic release of thyrotropin releasing hormone. J. Endocrinol. 103:257–261.Google Scholar
  45. Friedman, T. C., and Wilk, S. (1985). The effect of inhibitors of prolyl endopeptidase and pyroglutamyl peptidase hydrolase on TRH degradation in rat serum. Biochem. Biophys. Res. Commun. 132:787–793.Google Scholar
  46. Friedman, T. C., Loh, Y. P., Cawley, N. X., Birch, N. P., Huang, S. S., Jackson, I. M., and Nillni, E. A. (1995). Processing of pro-TRH by bovine intermediate lobe secretory vesicle membrane PC1 and PC2 enzymes. Endocrinology 136:4462–4472.Google Scholar
  47. Fink, G., Koch, Y., and Ben-Aroya, N. (1983). TRH in hypophysial portal blood: characteristics of release and relationship to thyrotropin and prolactin secretion. In Griffiths, E. C., and Bennett, G. W. (eds.), Thyrotropin-Releasing Hormone, Raven Press, New York, pp. 127–144.Google Scholar
  48. Garat, B., Miranda, J., Charli, J. L., and Joseph-Bravo, P. (1985). Presence of a membrane bound pyroglutamyl aminopeptidase degrading thyroliberin releasing hormone in rat brain. Neuropeptides 6:27–40.Google Scholar
  49. Gershengorn, M. C. (1992). Post-transcriptional regulation of TRH receptor messenger RNA by TRH. In Progress in Endocrinology, Proc. 9th Int. Congr. Endocrinol., Nice, pp. 299–302.Google Scholar
  50. Gollasch, M., Kleuss, C., Hescheler, J., Witting, B., and Schultz, G. (1993). Gi2 and protein kinase C are required for thyrotropin-releasing hormone-induced stimulation of voltage-dependent Ca2+ channels in rat pituitary GH3 cells. Proc. Natl. Acad. Sci. USA 90:6265–6269.Google Scholar
  51. Grosvenor, C. E., and Mena, F. (1980). Evidence that thyrotropin-releasing hormone and a hypothalamic prolactin-releasing factor may function in the release of prolactin in the lactating rat. Endocrinology 107:863–868.Google Scholar
  52. Haisenleder, D. J., Orotlano, G. A., Dalkin, A. C., and Marschall, J. C. (1992). Differential actions of TRH pulses in the expression of prolactin and TSH subunit messenger ribonucleic acid in rat pituitary cells in vitro. Endocrinology 130:2915–2923.Google Scholar
  53. Hefco, E., Krulich, L., Illner, P., and Larsen, P. R. (1975). Effect of acute exposure to cold on the activity of the hypothalamic-pituitary-thyroid system. Endocrinology 97:1185–1195.Google Scholar
  54. Hollenberg, A. N., Monden, T., Flynn, T. R., Boers, M. E., Cohen, O., and Wondisford, F. E. (1995). The human thyrotropin releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol. Endocrinol. 9:540–550.Google Scholar
  55. Horsthemke, B., Leblanc, P., Kordon, C., Wattiaux-de Conink, S., Wattiaux, R., and Bauer, K. (1984). Subcellular distribution of particle-bound neutral peptidases capable of hydrolyzing gonadoliberin, thyroliberin, enkephalin and substance P. Eur. J. Biochem. 139:315–320.Google Scholar
  56. Hsieh, K. P., and Martin, T. F. J. (1992). Thyrotropin-releasing hormone and gonadotropin-releasing hormone receptors activate phospholipase C by coupling to the guanosine triphosphate-binding proteins Gq and G11. Mol. Endocrinol. 6:1673–1681.Google Scholar
  57. Jackson, I. M. D. (1995). TRH and CRH. What's the message? Endocrinology 136:2793–2794.Google Scholar
  58. Joseph-Bravo, P., Loudes, C., Charli, J. L., and Kordon, C. (1979). Subcellular distribution of brain peptidases degrading luteinizing hormone releasing hormone and thyrotropin releasing hormone. Brain Res. 166:321–329.Google Scholar
  59. Joseph-Bravo, P., Charli, J. L., and Covarrubias, L. (1989). Metabolism of thyrotropin releasing hormone. In Velasco, M., Israel, A., Romero, E., and Silva, H. (eds.), Recent Advances in Pharmacology and Therapeutics, Elsevier, Amsterdam, pp. 215–220.Google Scholar
  60. Joseph-Bravo, P., Fresan, M. E., Cisneros, M., Vargas, M. A., and Charli, J. L. (1994). Pyroglutamyl peptidase II activity is not in the processes of bulbospinal TRHergic neurons. Neurosci. Lett. 178:243–246.Google Scholar
  61. Kakucska, I., Qi, Y., and Lechan, R. M. (1995). Changes in adrenal status affect hypothalamic TRH gene expression in parallel with CRH. Endocrinology 136:2795–2808.Google Scholar
  62. Koller, K. J., Wolff, R. S., Warden, M. K., and Zoeller, R. T. (1987). Thyroid hormones regulate levels of thyrotropin-releasing hormone mRNA in the paraventricular nucleus. Proc. Natl. Acad. Sci. USA 84:7329–7333.Google Scholar
  63. Kovács, K. J., and Sawchenko, P. E. (1996). Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J. Neurosci. 16:262–273.Google Scholar
  64. Kubek, M. J., Knoblach, B. S., Shariff, N. A., Burt, D. R., Buterbaugh, G. G., and Fuson, K. S. (1993). Thyrotropin-releasing hormone gene expression and receptors are differentially modified in limbic seizures. Ann. Neurol. 33:70–75.Google Scholar
  65. Lamberts, S. W. J., and MacLeod, R. M. (1990). Regulation of prolactin secretion at the level of the lactotroph. Physiol. Rev. 70:279–325.Google Scholar
  66. Ladram, A., Bulant, M., Delfour, A., Montagne, J. J., Vaudry, H., and Nicolas, P. (1994). Modulation of the biological activity of thyrotropin releasing hormone by alternate processing of pro-TRH. Biochimie 76:320–328.Google Scholar
  67. Lechan, R. M., and Toni, R. (1992). Thyrotropin releasing hormone neuronal systems in the central nervous system. In Nemeroff, C. B. (ed.), Neuroendocrinology, CRC Press, Boca Raton, FL, pp. 279–330.Google Scholar
  68. Lechan, R., Wu, P., Jackson, I. M. D., Wolf, H., Cooperman, S., Mandel, G., and Goodman, R. H. (1986). Thyrotropin-releasing hormone precursor: Characterization in rat brain. Science 231:159–161.Google Scholar
  69. Lee, S. L., Stewart, K., and Goodman, R. (1988). Structure of the gene encoding rat thyrotropin releasing hormone. J. Biol. Chem. 263:16604–16609.Google Scholar
  70. Lee, S. L., Yang, I.-M., and Lin, A. (1993). A multifunctional site in the promoter of the rat thyrotropin releasing hormone (TRH) gene binds c-Jun, CREB, and the thyroid hormone receptor. The Endocrine Society 75th Annual Meeting, Las Vegas, NV, p. 532.Google Scholar
  71. Liu, J. L., and Patel, Y. C. (1995). Glucocorticoids inhibit somatostatin gene expression through accelerated degradation of somatostatin messenger ribonucleic acid in human thyroid medullary carcinoma (TT) cells. Endocrinology 136:2389–2396.Google Scholar
  72. Luo, L., Bruhn, T., and Jackson, I. M. D. (1995). Glucocorticoids stimulate thyrotropin releasing gene expression in cultural hypothalamic neurons. Endocrinology 136:4945–4959.Google Scholar
  73. Malfroy, B., Swertz, J. P., Guyon, A., Roques, B. P., and Schwartz, J. C. (1978). High affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 294:558–560.Google Scholar
  74. Méndez, M., Cruz, C., Joseph-Bravo, P., Wilk, S., and Charli, J.-L. (1990). Evaluation of the role of prolylendopeptidase and pyroglutamyl peptidase I in the metabolism of LHRH and TRH in brain. Neuropeptides 17:55–62.Google Scholar
  75. Martin, T. F. J., and Kowalchyk, J. A. (1984a). Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: Involvement of diacylglycerol. Endocrinology 115:1517–1526.Google Scholar
  76. Martin, T. F. J., and Kowalchyk, J. A. (1984b). Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: Involvement of Ca+2. Endocrinology 115:1527–1536.Google Scholar
  77. Merchenthaler, I., and Liposits, Z. (1994). Mapping of thyrotropin-releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels. Acta Biol. Hung. 45:361–374.Google Scholar
  78. Miyamoto, T., Suzuki, S., and Degroot, L. J. (1993). High affinity and specificity of dimeric binding of thyroid hormone receptors to DNA and their ligand dependent association. Mol. Endocrinol. 7:224–231.Google Scholar
  79. Murdoch, G. H., Waterman, M., Evans, R. M., and Rosenfeld, M. G. (1985). Molecular mechanisms of phorbol ester, thyrotropin-releasing hormone and growth factor stimulation of prolactin gene transcription. J. Biol. Chem. 260:11852–11858.Google Scholar
  80. Nillni, E. A., Friedman, T. C., Todd, R. B., Birch, N. P., Loh, Y. P., and Jackson, I. M. D. (1995). Prothyrotropin-releasing hormone processing by recombinant PC1. J. Neurochem. 65:2462–2472.Google Scholar
  81. O'Connor, B., and O'Cuinn, G. (1984). Localization of a narrow-specificity thyroliberin hydrolyzing pyroglutamate aminopeptidase in synaptosomal membranes of guinea-pig brain. Eur. J. Biochem. 144:271–278.Google Scholar
  82. O'Leary, R., and O'Connor, B. (1995). Thyrotropin-releasing hormone. J. Neurochem. 65:953–963.Google Scholar
  83. Ouafik, L. H., Giraud, P., Slers, P., Dutour, A., Castanas, E., Boudouresque, F., and Oliver, C. (1987). Evidence for high peptide α-amidating activity in the pancreas from neonatal rats. Proc. Natl. Acad. Sci. USA 84:261–264.Google Scholar
  84. Paek, I., and Axel, R. (1987). Glucocorticoids enhance stability of human growth hormone mRNA. Mol. Cell. Biol. 7:1496–1507.Google Scholar
  85. Ponce, G., Charli, J.-L., Pasten, J. A., Aceves, C., and Joseph-Bravo, P. (1988). Tissue-specific regulation of pyroglutamate aminopeptidase II activity by thyroid hormones. Neuroendocrinology 48:211–213.Google Scholar
  86. Pu, L. P., Ma, W., Barker, J. L., and Loh, Y. P. (1996). Differential coexpression of genes encoding prothyrotropin-releasing hormone (Pro-TRH) and prohormone convertases (PC1 and PC2) in rat brain neurons: Implications for differential processing of pro-TRH. Endocrinology 137:1233–1241.Google Scholar
  87. Rage, F., Lazaro, J.-B., Benyassi, A., Arancibia, S., and Tapia-Arancibia, L. (1994). Rapid changes in somatostatin and TRH mRNA in whole rat hypothalamus in response to acute cold exposure. J. Neuroendocrinol. 6:19–23.Google Scholar
  88. Ramsdell, J. S., and Tashjian, A. H., Jr. (1985). Thyrotropin-releasing hormone and epidermal growth factor stimulate prolactin synthesis by a pathway(s) that differs from that used by phorbol esters: Dissociation of actions by calcium dependency and additivity. Endocrinology 117:2050–2060.Google Scholar
  89. Rondeel, J. M. M., De Greef, W. J., Van der Schoot, P., Karels, B., Klootwijk, W., and Visser, T. J. (1988). Effect of thyroid status and paraventricular area lesions on the release of thyrotropin-releasing hormone and catecholamines into hypophysial portal blood. Endocrinology 123:523–527.Google Scholar
  90. Sánchez, E., Charli, J.-L., Morales, C., Corkidi, G., Seidah, N., Joseph-Bravo, P., and Uribe, R. M. (1996). Expression of the proprotein convertases PC1 and PC2 mRNAs in thyrotropin releasing hormone neurons of the rat paraventricular nucleus of hypothalamus. Brain Res. 761:77–86.Google Scholar
  91. Schauder, B., Schomburg, L., Kohrle, J., and Bauer, K. (1994). Cloning of a CDNA encoding an ectoenzyme that degrades thyrotropin-releasing hormone. Proc. Natl. Acad. Sci. USA 91:9534–9538.Google Scholar
  92. Schomburg, L., and Bauer, K. (1995). Thyroid hormones rapidly and stringently regulate the messenger RNA levels of the thyrotropin releasing hormone (TRH) receptor and the TRH degrading ectoenzyme. Endocrinology 136:3480–3485.Google Scholar
  93. Segerson, T. P., Kauer, J., Wolfe, H. C., Mobtaker, H., Wu, P., Jackson, I. M. D., and Lechan, R. M. (1987). Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238:78–80.Google Scholar
  94. Seidah, N., Marcinkiewicz, M., Benjannet, S., Gaspar, L., Beaubien, G., Mattei, M., Lazure, C., Mbikay, M., and Chretien, M. (1991). Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, furin, and Kex2; Distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol. Endocrinol. 5:111–122.Google Scholar
  95. Simard, M., Pekary, A. E., Smith, V. P., and Hersman, J. M. (1989). Thyroid hormones modulate thyrotropin-releasing hormone biosynthesis in tissues outside the hypothalamic-pituitary axis of male rats. Endocrinology 125:524–531.Google Scholar
  96. Smith, M. A., Shinya, M., Kim, S.-Y., and Kvetansnky, R. (1995). Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology 136:3743–3750.Google Scholar
  97. Stevenin, B., and Lee, S. L. (1995). Hormonal regulation of the thyrotropin releasing hormone (TRH) gene. Endocrinologist 5:286–296.Google Scholar
  98. Taylor, W. L., and Dixon, J. E. (1978). Characterization of a pyroglutamate aminopeptidase from rat serum that degrades thyrotropin-releasing hormone. J. Biol. Chem. 253:6934–6940.Google Scholar
  99. Taylor, T., Wondisford, F. E., Blaine, T., and Weintraub, B. D. (1990). The paraventricular nucleus of the hypothalamus has a major role in thyroid hormone feedback regulation of thyrotropin synthesis and secretion. Endocrinology 126:317–324.Google Scholar
  100. Torres, H., Charli, J.-L., González-Noriega, A., Vargas, M. A., and Joseph-Bravo, P. (1986). Subcellular distribution of the enzymes degrading thyrotropin releasing hormone and metabolites in rat brain. Neurochem. Int. 9:103–110.Google Scholar
  101. Uribe, R. M., Pasten, J., Ponce, G., Méndez, M., Covarrubias, L., Joseph-Bravo, P., and Charli, J.-L. (1991). Some events of TRH metabolism are regulated in lactating and cycling rats. Neuroendocrinology 54:493–498.Google Scholar
  102. Uribe, R. M., Redondo, J. L., Charli, J.-L., and Joseph-Bravo, P. (1993). Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology 58:140–145.Google Scholar
  103. Uribe, R. M., Joseph-Bravo, P., Ponce, G., Cisneros, M., Aceves, C., and Charli, J. L. (1994). Influence of thyroid status on TRH metabolism in rat olfactory bulb. Peptides 15:435–439.Google Scholar
  104. Uribe, R. M., Pérez-Martínez, L., Covarrubias, M. L., Gómez, O. B., Covarrubias, L., Charli, J.-L., and Joseph-Bravo, P. (1995). Neural regulation of TRH biosynthesis. Neurosci. Lett. 201:41–44.Google Scholar
  105. Uribe, R. M., Jasso, P., Morales, C., de Gortari, P., Charli, J.-L., and Joseph-Bravo, P. (1996). In situ hybridization histochemical analysis of pyroglutamyl peptidase II mRNA distribution in the rat brain. 26th Annual Meeting, Society for Neuroscience, Washington, DC.Google Scholar
  106. van Haateran, G. A. C., Linkels, E., Klootwijk, W., van Toor, H., Rondeel, J. M. M., Themmen, A. P. N., de Jong, F. H., Valentijn, K., Vaudry, H., Bauer, K., Visser, T. J., and de Greef, W. J. (1995). Starvation-induced changes in the hypothalamic content of prothyrotropin releasing hormone (proTRH) mRNA and the hypothalamic release of proTRH-derived peptides: Role of the adrenal gland. J. Endocrinol. 145:143–153.Google Scholar
  107. Vargas, M. A., Méndez, M., Cisneros, M., Joseph-Bravo, P., and Charli, J. L. (1987). Regional distribution of the membrane bound pyroglutamate aminopeptidase degrading TRH in rat brain. Neurosci. Lett. 79:1476–1492.Google Scholar
  108. Vargas, M. A., Herrera, J., Uribe, R. M., Charli, J.-L., and Joseph-Bravo, P. (1992). Ontogenesis of pyroglutamyl peptidase II activity in rat brain, adenohypophysis and pancreas. Dev. Brain Res. 66:251–256.Google Scholar
  109. Vargas, M. A., Joseph-Bravo, P., and Charli, J. L. (1994). Thyrotropin-releasing hormone down regulates pyroglutamyl aminopeptidase II activity in adenohypophyseal cells. Neuroendocrinology 60:323–330.Google Scholar
  110. Vargas, M. A., Bourdais, J., Sánchez, S., Uriostegui, B., Moreno, E., Joseph-Bravo, P., and Charli, J.-L. Multiple hypothalamic factors regulate pyroglutamyl peptidase II in cultures of adenohypophyseal cells: Role of the cAMP pathway. J. Neuroendoc. (in press).Google Scholar
  111. Wilk, S., and Wilk, E. (1989). Pyroglutamyl peptidase II, a thyrotropin releasing hormone degrading enzyme: Purification and specificity studies of the rabbit brain enzyme. Neurochem. Int. 15:81–89.Google Scholar
  112. Yamada, M., Rogers, D., and Wilber, J. F. (1989). Exogenous triiodothyronine lowers thyrotropin-releasing hormone concentrations in the specific hypothalamic nucleus (paraventricular) involved in thyrotropin regulation and also in posterior nucleus. Neuroendocrinology 50:560–563.Google Scholar
  113. Yamada, M., Radovick, S., Wondisford, R. E., Nakayama, Y., Weingraub, B. D., and Wilber, J. F. (1990). Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human prepro thyrotropin-releasing-hormone. Mol. Endocrinol. 4:551–556.Google Scholar
  114. Yang-Yen, H.-F., Chambard, J. C., Sun, Y. L., Smeal, T., Scmidt, T. J., Drouin, J., and Karin, M. (1990). Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1215.Google Scholar
  115. Zoeller, R. T., and Fletcher, D. L. (1994). A single administration of ethanol simultaneously increases c-fos mRNA and reduces c-jun mRNA in the hypothalamus and hippocampus. Mol. Brain. Res. 24:185–191.Google Scholar
  116. Zoeller, R. T., Wolf, R. S., and Koller, K. J. (1988). Thyroid hormone regulation of messenger ribonucleic acid encoding thyrotropin (TSH)-releasing hormone is independent of the pituitary gland and TSH. Mol. Endocrinol. 2:248–252.Google Scholar
  117. Zoeller, R. T., Kabeer, N., and Albers, H. E. (1990). Cold exposure elevates cellular levels of mRNA encoding TRH in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology 127:2955–2962.Google Scholar
  118. Zoeller, R. T., Simonyi, A., Butnariu, O., and Fletcher, K. L. (1995). Effects of acute ethanol administration and cold exposure on the hypothalamic pituitary axis. Endocrine 3:39–47.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • P. Joseph-Bravo
    • 1
    • 2
  • R. M. Uribe
    • 1
  • M. A. Vargas
    • 1
  • L. Pérez-Martínez
    • 1
  • T. Zoeller
    • 3
  • J. L. Charli
    • 1
  1. 1.Department of Molecular Genetics and Physiology, Institute of BiotechnologyUniversidad Nacional Autonoma de MéxicoCuernavacaMéxico
  2. 2.Instituto de Biotecnología, UNAMCuernavacaMexico
  3. 3.Department of BiologyUniversity of MassachusettsAmherst

Personalised recommendations