Plant Molecular Biology

, Volume 51, Issue 5, pp 731–743 | Cite as

Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus

  • Iñaki Iturbe-Ormaetxe
  • Kosmas Haralampidis
  • Kalliopi Papadopoulou
  • Anne E. Osbourn


Cloning of OSCs required for triterpene synthesis from legume species that are amenable to molecular genetics will provide tools to address the importance of triterpenes and their derivatives during normal plant growth and development and also in interactions with symbionts and pathogens. Here we report the cloning and characterization of a total of three triterpene synthases from the legume species Medicago truncatula and Lotus japonicus. These include a β-amyrin synthase from M. truncatula (MtAMYI) and a mixed function triterpene synthase from Lotus japonicus (LjAMY2). A partial cDNA predicted to encode a β-amyrin synthase (LjAMY1) was also isolated from L. japonicus. The expression patterns of MtAMY1, LjAMY1 and LjAMY2 and of additional triterpene synthases previously characterised from M. truncatula and pea differ in different plant tissues and during nodulation, suggesting that these enzymes may have distinct roles in plant physiology and development.

α-amyrin β-amyrin lupeol nodulation saponins sterols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, I., Ebizuka, Y. and Sankawa, U. 1988. Purification of 2,3-oxidosqualene;cycloartenol cyclase from pea seedlings. Chem. Pharm. Bull. 36: 5031–5034.Google Scholar
  2. Abe. I., Sankawa, U. and Ebizuka, Y. 1989. Purification of 2,3-Oxidosqualene – beta amyrin cyclase from pea seedlings. Chem. Pharm. Bull. 37 (2): 536–538.Google Scholar
  3. Abe, I., Rohmer, M. and Prestwich, G.D. 1993. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93: 2189–2206.Google Scholar
  4. Abe, I. and Prestwich, G.D. 1995. Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231–234.Google Scholar
  5. Ali, M.S., Ahmad, F., Ahmad, V.U., Azhar, I. and Usmanghani, K. 2001. Unusual chemical constituents of Lotus garcinii (Fabaceae). Turkish J.Chem. 25: 107–112 2001.Google Scholar
  6. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acid Res. 25: 3389–3402.Google Scholar
  7. Baisted, D.J. 1971. Sterol and triterpene synthesis in the developing and germinating pea seed. Biochem. J. 124: 375–383.Google Scholar
  8. Cook, D.R. 1999. Medicago truncatula – a model in the making. Curr. Opin. Plant Biology 2: 301–304.Google Scholar
  9. Corey, E.J., Matsuda, S.P.T. and Bartel, B. 1993. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc. Natl. Acad. Sci. USA 90: 11628–11632.Google Scholar
  10. Dellaporta, S., Wood, L.G. and Hincks, J.B. 1983. A plant DNA minipreparation. Version II. Plant. Mol. Biol. Report 1: 19–21.Google Scholar
  11. deVries, S.C., Springer, J. and Wessels, J.H.G. 1982. Diversity of abundant messenger RNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156: 129–135.Google Scholar
  12. Felsenstein, J. 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418–427.Google Scholar
  13. Gamas, P., Niebel, F.D.C., Lescure, N. and Cullimore, J.V. 1996. Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol. Plant-Microbe Interact. 9: 233–242.Google Scholar
  14. Gogorcena, Y., Gordon, A.J., Escuredo, P.R., Minchin, F.R., Witty, J.F., Moran, J.F. and Becana, M. 1997. Nitrogen fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol. 113: 1193–1201.Google Scholar
  15. Grandmougin-Ferjani, A., Dalpe, Y., Hartmann, M.A., Laruelle, F. and Sancholle, M. 1999. Sterol distribution in arbuscular mycorrhizal fungi. Phytochemistry 50: 1027–1031.Google Scholar
  16. Haralampidis, K., Trojanowska, M. and Osbourn, A.E. 2001a. Biosynthesis of triterpenoid saponins in plants. Adv. Biochem. Eng./Biotechnology 75: 31–49.Google Scholar
  17. Haralampidis, K., Bryan, G., Qi, X., Papadopoulou, K., Bakht, S., Melton, R. and Osbourn, A. 2001b. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. USA 98: 13431–13436.Google Scholar
  18. Hayashi, H., Huang, P.Y., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y., Kushiro, T., Shibuya, M. and Ebizuka, Y. 2001a. Cloning and characterization of a cDNA encoding beta-amyrin synthase involved in glycyrrhizin and soyasaponin biosynthesis in liquorice. Biol. and Pharm. Bull. 24: 912–916.Google Scholar
  19. Hayashi, H., Huang, P.Y., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y., Yazaki, K., Tanaka, S., Kushiro, T., Shibuya, M. and Ebizuka, Y. 2001b. Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic acid. Eur. J. Biochem. 268: 6311–6317.Google Scholar
  20. Hernandez, L.E. and Cooke, D.T. 1996. Lipid composition of symbiosomes from pea root nodules. Phytochemistry 42: 341–346.Google Scholar
  21. Herrera, J.B.R., Bartel, B., Wilson, W.K. and Matsuda, S.P.T. 1998. Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene. Phytochemistry 49: 1905–1911.Google Scholar
  22. Hoffmann, B., Trinh, T.H., Leung, J., Kondorosi, A. and Kondorosi, E. 1997. A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant-Microbe Interact. 10: 307–315.Google Scholar
  23. Hostettmann, K.A. and Marston, A. 1991. Saponins (Cambridge Univ. Press, Cambridge, UK)Google Scholar
  24. Huhman, D.V. and Sumner, L.W. 2002. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59: 347–360.Google Scholar
  25. Husselstein-Muller, T., Schaller, H. and Benveniste, P. 2001. Molecular cloning and expression in yeast of 2,3-oxidosqualenetriterpenoid cyclases from A rabidopsis thaliana. Plant Mol. Biol. 45: 75–92.Google Scholar
  26. Jurzysta, M., Burda, S., Oleszek, W., Ploszynski, M., Small, E. and Nozzolillo, C. 1992. Chemical-composition of seed saponins as a guide to the clasification of Medicago species. Can. J. Bot. 70: 1384–1387.Google Scholar
  27. Kushiro, T., Shibuya, M. and Ebizuka, Y. 1998a. Beta-amyrin synthase – Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238–244.Google Scholar
  28. Kushiro, T., Shibuya, M. and Ebizuka, Y. 1998b. Molecular cloning of oxidosqualene cyclase cDNA from Panax ginseng. The isogene that encodes β-amyrin synthase. Towards Natural Medicine Research in the 21st Century, Excerpta Medica International Congress Series 1157 (Ageta, H., Aimi, N., Ebizuka, Y., Fujita, T. & Honda, G., eds.), pp. 421–427. Elsevier ScienceBV, Amsterdam, the Netherlands.Google Scholar
  29. Kushiro, T., Shibuya, M. and Ebizuka, Y. 1999a. Chimeric triterpene synthasse. A possible model for multifunctional triterpene synthase. J. Am Chem. Soc. 121: 1208–1216.Google Scholar
  30. Kushiro, T., Shibuya, M. and Ebizuka, Y. 1999b. Cryptic regiospeci-ficity in deprotonation step of triterpene biosynthesis catalyzed by new members of lupeol synthase. Tetrahedron Letts. 40: 5553–5556.Google Scholar
  31. Kushiro, T., Shibuya, M., Masuda, K. and Ebizuka, Y. 2000a. A novel multifunctional triterpene synthase from Arabidopsis thaliana. Tetrahedron Letts. 41: 7705–7710.Google Scholar
  32. Kushiro, T., Shibuya, M., Masuda, K. and Ebizuka, Y. 2000b. Mutational studies on triterpene synthases: Engineering lupeol synthase into beta-amyrin synthase. J. Am. Chem. Soc. 122: 6816–6824.Google Scholar
  33. Matsuda, S.P.T. 1998. On the diversity of oxidosqualene cyclases. Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers. (A. Steinbüchel, ed), pp. 300–307. Wiley-VCH, Weinheim.Google Scholar
  34. Morita, M., Shibuya, M., Kushiro, T., Masuda, K. and Ebizuka, Y. 2000. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) – New alpha-amyrinproducing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267 (12): 3453–3460.Google Scholar
  35. Morrissey, J.P. and Osbourn, A.E. 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Revs. 63: 708–724.Google Scholar
  36. Nes, W. D. and Heftmann, E. 1981. A comparison of triterpenoids with steroids as membrane components. J. Nat. Prod. 44, 377–400.Google Scholar
  37. Nes, W.R. and McKean, M.L. 1977. Biochemistry of steroids and other isoprenoids, University Park Press, Baltimore.Google Scholar
  38. Ohana, P., Delmer, D.P., Carlson, R.W., Glushka, J., Azadi, P., Bacic, T. and Benziman, M. 1998. Identification of a novel triterpenoid saponin from Pisum sativum as a specific inhibitor of the diguanylate cyclase of Acetobacter xylinum. Plant and Cell Physiol. 39: 144–152.Google Scholar
  39. Oleszek, W., Jurzysta, M., Ploszynski, M., Colquhoun, I.J., Price, K.R., and Fenwick, G.R. 1992. Zahnic acid tridesmoside and other dominant saponins from alfalafa (Medicago sativa L.) aerial parts. J. Ag. Food Chemistry 40: 191–196.Google Scholar
  40. Palmer, M.A. and Bowden, B.N. 1977. Variation in sterol and triterpene content of developing Sorghum bicolor grain. Phytochemistry 16: 459–463.Google Scholar
  41. Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J. and Osbourn, A.E. 1999. Compromised disease resistance in saponindeficient plants. Proc. Natl. Acad. Sci. USA 96: 12923–12928.Google Scholar
  42. Poralla, K., Hewelt, A., Prestwich, G.D., Abe, I., Reipen, I. and Sprenger, G. 1994. A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19: 157–8.Google Scholar
  43. Price, K.R., Johnson, I.T. and Fenwick, G.R. 1987. The Chemistry and biological significance of saponins in food and feedingstuffs. Crit. Rev. Food Sci. Nutr. 26: 27–135Google Scholar
  44. Rahman, A., Ahamed, A., Amakawa, T., Goto, N. and Tsurumi, S. 2001. Chromosaponin I specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Plant Physiol. 125: 990–1000.Google Scholar
  45. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  46. Segura, M.J.R., Meyer, M.M. and Matsuda, S.P.T. 2000. Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol. Org. Letts. 2: 2257–2259.Google Scholar
  47. Shibuya, M., Zhang, H., Endo, A., Shishikura, K., Kushiro, T. and Ebizuka, Y. 1999. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur. J. Biochem. 266: 302–307.Google Scholar
  48. Stougard, J. 2001. Genetics and genomics of root symbiosis. Curr. Opin. Plant Biology 4: 328–335.Google Scholar
  49. Threlfall, D. and Whitehead, I.M. 1990. Redirection of terpenoid biosynthesis in elicitor-treated plant cell suspension cultures. In: Plant Lipid Biochemistry (P.J. Quinn and J.L. Harwood, eds.,), Portland Press, London, pp. 344–346.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Iñaki Iturbe-Ormaetxe
    • 1
  • Kosmas Haralampidis
    • 1
  • Kalliopi Papadopoulou
    • 2
  • Anne E. Osbourn
    • 1
  1. 1.Sainsbury LaboratoryJohn Innes CentreNorwichU.K
  2. 2.National Agricultural Research FoundationInstitute of KalamataKalamataGreece

Personalised recommendations