Journal of Chemical Ecology

, Volume 23, Issue 12, pp 2803–2824 | Cite as

Premating Isolation Is Determined by Larval Rearing Substrates in CactophilicDrosophila mojavensis. III. Epicuticular Hydrocarbon Variation Is Determined by Use of Different Host Plants inDrosophila mojavensis andDrosophila arizonae

  • Melissa D. Stennett
  • William J. Etges


Adult epicuticular hydrocarbon profiles of male and femaleDrosophila mojavensis have been implicated as determinants of mate choice leading to premating isolation between geographically isolated populations. Hydrocarbon profiles of a Baja California and a mainland Sonora population ofDrosophila mojavensis, ayellow body mutant strain ofD. mojavensis, and a population ofD. arizonae were compared among flies that had been reared on two cactus substrates and a synthetic laboratory growth medium in order to assess the degree to which natural rearing substrates influence adult hydrocarbon composition. Twenty epicuticular hydrocarbon components, ranging from C29 to C41, were recovered by gas chromatography that represented major classes of alkanes, alkenes, and alkadienes. We found differences in relative amounts of epicuticular hydrocarbons among Baja and mainlandD. mojavensis, and theyellow body mutants. There were few differences betweenD. mojavensis andD. arizonae. The effects of rearing substrates were remarkable: most of the differences were due to the effects of lab food vs. cactus, but there were significant rearing substrate effects due to differences in the two cacti used. Eleven hydrocarbon components differed in abundance between males and females or showed significant sex × rearing substrate interactions from ANOVA. The effects of rearing substrates on epicuticular hydrocarbon composition inD. mojavensis are concordant with changes in the intensity of premating isolation between populations, implicating host ecology as a major determinant in patterns of mate choice in this species.

Incipient speciation sexual selection mating behavior cuticular hydrocarbons cactus Sonoran Desert Drosophila 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALCORN, S. M., ORUM, T. V., STEIGERWALT, A. G., FOSTER, J. L. M., FOGLEMAN, J. C., and BRENNER, D. J. 1991. Taxonomy and pathogenicity ofErwinia cacticida sp. nov.Int. J. Syst. Bacteriol. 41:197–212.Google Scholar
  2. ANTONY, C., and JALLON, J.-M. 1982. The chemical basis for sex recognition inDrosophila melanogaster.J. Insect Physiol. 28:873–880.Google Scholar
  3. BARTELT, R. J., ARMOLD, M. T., SCHANER, A. M., and JACKSON, L. L. 1986. Comparative analysis of cuticular hydrocarbons in theDrosophila virilis species group.Comp. Biochem. Physiol. 83B:731–742.Google Scholar
  4. BRAZNER, J. C. 1983. The influence of rearing environment on sexual isolation between populations ofDrosophila mojavensis: An alternative to the character displacement hypothesis. MS thesis. Syracuse University, Syracuse, New York.Google Scholar
  5. BRAZNER, J. C., and ETGES, W. J. 1993. Pre-mating isolation is determined by larval rearing substrates in cactophilicDrosophila mojavensis. II. Effects of larval substrates on time to copulation, mate choice, and mating propensity.Evol. Ecol. 7:605–624.Google Scholar
  6. BUTLIN, R. 1995. Genetic variation in mating signals and responses, pp. 327–366,in D. M. Lambert and H. G. Spencer (eds.). Speciation and the Recognition Concept: Theory and Application. Johns Hopkins University, Baltimore.Google Scholar
  7. CARSON, H. L. 1987. The contribution of sexual behavior to Darwinian fitness.Behav. Genet. 17:597–611.Google Scholar
  8. CARSON, H. L. 1995. Fitness and the sexual environment, pp. 123–137,in D. M. Lambert and H. G. Spencer (eds.). Speciation and the Recognition Concept. The Johns Hopkins University Press, Baltimore.Google Scholar
  9. COYNE, J. A., CRITTENDEN, A. P., and MAH, K. 1994. Genetics of a pheromonal difference contributing to reproductive isolation inDrosophila.Science 265:1461–1464.Google Scholar
  10. DOBZHANSKY, T., and PAVLOVSKY, O. 1967. Experiments on the incipient species of theDrosophila paulistorum complex.Genetics 55:141–156.Google Scholar
  11. DOBZHANSKY, T., and SPASSKY, B. 1959.Drosophila paulistorum, a cluster of species in statu nascendi.Proc. Natl. Acad. Sci. U.S.A. 45:419–428.Google Scholar
  12. EHRMAN, L., and WASSERMAN, M. 1987. The significance of asymmetrical sexual isolation.Evol. Biol. 21:1–20.Google Scholar
  13. ETGES, W. J. 1989. Evolution of developmental homeostasis inDrosophila mojavensis.Evol. Ecol. 3:189–201.Google Scholar
  14. ETGES, W. J. 1990. Direction of life history evolution inDrosophila mojavensis, pp. 37–56,in J. S. F. Barker, W. T. Starmer, and R. J. MacIntyre (eds.). Ecological and Evolutionary Genetics ofDrosophila. Plenum, New York.Google Scholar
  15. ETGES, W. J. 1992. Premating isolation is determined by larval substrates in cactophilicDrosophila mojavensis.Evolution 46:1945–1950.Google Scholar
  16. ETGES, W. J. 1993. New and undescribed mutants ofDrosophila mojavensis.Dros. Inf. Serv. 72:70.Google Scholar
  17. ETGES, W. J. 1997. Pre-mating isolation is determined by larval rearing substrates in cactophilicDrosophila mojavensis. IV. Expression of mutations with pleiotropic effects on courtship behavior and pre-mating isolation withDrosophila arizonae are altered by rearing substrates.J. Insect Behav. Submitted.Google Scholar
  18. ETGES, W. J., JOHNSON, W. R., DUNCAN, G. A., HUCKINS, G., and HEED, W. B. 1997. Ecological genetics of cactophilicDrosophila,in R. Robichaux (ed.). Ecology of Sonoran Desert Plants and Plant Communities. University of Arizona Press, Tucson. In press.Google Scholar
  19. FERVEUR, J.-F. 1991. Genetic control of pheromones inDrosophila simulans. I. Ngbo, a locus on the second chromosome.Genetics 128:293–301.Google Scholar
  20. FOGLEMAN, J. C., and STARMER, W. T. 1985. Analysis of community structure of yeasts associated with the decaying stems of cactus. III.Stenocereus thurberi.Microb. Ecol. 11:165–173.Google Scholar
  21. HEED, W. B., and MANGAN, R. L. 1986. Community ecology of the Sonoran DesertDrosophila, pp. 311–345,in M. Ashburner, H. L. Carson and J. N. Thompson (eds.). The Genetics and Biology ofDrosophila, Vol. 3d. Academic Press, New York.Google Scholar
  22. JACKSON, L. L., ARNOLD, M. T., and REGNIER, F. E. 1974. Cuticular lipids of adult fleshflies,Sarcophaga bullata.Insect Biochem. 4:369–379.Google Scholar
  23. JALLON, J.-M. 1984. A few chemical words exchanged during courtship and mating ofDrosophila melanogaster.Behav. Genet. 14:441–478.Google Scholar
  24. JAMART, J. A., CARRACEDO, M. C., and CASARES, P. 1993. Sexual isolation betweenDrosophila melanogaster females andD. simulans males. Male mating propensities versus success in hybridization.Experientia 49:596–598.Google Scholar
  25. KOEPFER, H. R. 1987a. Selection for sexual isolation between geographic forms ofDrosophila mojavensis. I. Interactions between the selected forms.Evolution 41:37–48.Google Scholar
  26. KOEPFER, H. R. 1987b. Selection for sexual isolation between geographic forms ofDrosophila mojavensis. II. Effects of selection on mating preference and propensity.Evolution 41:1409–1413.Google Scholar
  27. KREBS, R. A., and MARKOW, T. A. 1989. Courtship behavior and control of reproductive isolation inDrosophila mojavensis.Evolution 43:908–912.Google Scholar
  28. MALAGOLOWKIN-COHEN, C., SIMMONS, A. S., and LEVENE, H. 1965. A study of sexual isolation between certain strains ofDrosophila paulistorum.Evolution 19:95–103.Google Scholar
  29. MARGOLIES, D. C., and COLLINS, R. D. 1994. Chemically-mediated pre-mating behavior in two tetranychid species.Exp. Appl. Acarol. 18:493–501.Google Scholar
  30. MARKOW, T. A. 1981. Courtship behavior and control of reproductive isolation betweenDrosophila mojavensis andDrosophila arizonensis.Evolution 35:1022–1027.Google Scholar
  31. MARKOW, T. A. 1991. Sexual isolation among populations ofDrosophila mojavensis.Evolution 45:1525–1529.Google Scholar
  32. MARKOW, T. A., and TOOLSON, E. C. 1990. Temperature effects on epicuticular hydrocarbons and sexual isolation inDrosophila mojavensis, pp. 315–331,in J. S. F. Barker, W. T. Starmer, and R. J. MacIntyre (eds.). Ecological and Evolutionary Genetics ofDrosophila. Plenum Press, New York.Google Scholar
  33. MARKOW, T. A., FOGLEMAN, J. C., and HEED, W. B. 1983. Reproductive isolation in Sonoran DesertDrosophila.Evolution 37:649–652.Google Scholar
  34. NEMOTO, T., DOI, M., OSHIO, K., MATSUBAYASHI, H., OGUMA, Y., SUZUKI, T. and KUWAHARA, Y. 1994. (Z,Z)-5,27-Tritriacontadiene: Major sex pheromone ofDrosophila pallidosa (Diptera: Drosophilidae).J. Chem. Ecol. 20:3029–3037.Google Scholar
  35. NOOR, M. A. F., and COYNE, J. A. 1996. Genetics of a difference in cuticular hydrocarbons betweenDrosophila pseudoobscura andD. persimilis.Genet. Res. 68:117–123.Google Scholar
  36. OGUMA, Y., NEMOTOT, T., and KUWAHARA, Y. 1992. A sex pheromone study of a fruit-flyDrosophila virilis Sturtevant (Diptera: Drosophilidae): Additive effect of cuticular alkadienes to the major sex pheromone.Appl. Entomol. Zool. 27:499–505.Google Scholar
  37. PATERSON, H. E. H. 1978. More evidence against speciation by reinforcement.S. Afr. J. Sci. 74:369–371.Google Scholar
  38. PATERSON, H. E. H. 1985. The recognition concept of species, pp. 21–29,in E. S. Vrba (ed.). Species and Speciation. Transvaal Museum Monograph No. 4. Transvaal Museum, Pretoria.Google Scholar
  39. REED, J. R., HERNANDEZ, P., BLOMQUIST, G. J., FEYEREISEN, R., and REITZ, R. C. 1996. Hydrocarbon biosynthesis in the house fly,Musca domestica: Substrate specificity and cofactor requirement of P450hyd.Insect Biochem. Mol. Biol. 26:267–276.Google Scholar
  40. REIDY, M. F., TOOLSON, E. C., and MARKOW, T. A. 1991. Rearing temperature and epicuticular lipid composition inDrosophila mojavensis.Dros. Inf. Serv. 70:188–190.Google Scholar
  41. RUIZ, A., and HEED, W. B. 1988. Host plant specificity in the cactophilicDrosophila mulleri species complex.J. Anim. Ecol. 57:237–249.Google Scholar
  42. SAS INSTITUTE. 1985. SAS User's Guide Statistics. SAS Institute, Cary, North Carolina.Google Scholar
  43. SCOTT, D. G. 1994. Genetic variation for female mate discrimination inDrosophila melanogaster.Evolution 48:112–121.Google Scholar
  44. SCOTT, D. G., and RICHMOND, R. C. 1988. A genetic analysis of male-predominant pheromones inDrosophila melanogaster.Genetics 119:639–646.Google Scholar
  45. STALKER, H. D. 1942. Sexual isolation studies in the species complexDrosophila virilis.Genetics 27:238–257.Google Scholar
  46. STARMER, W. T. 1982. Analysis of community structure of yeasts associated with the decaying stems of cactus. I.Stenocereus gummosus.Microb. Ecol. 8:71–81.Google Scholar
  47. THOMPKINS, L., MCROBERT, S. P., and KANESHIRO, K. Y. 1993. Chemical communication in HawaiianDrosophila.Evolution 47:1407–1419.Google Scholar
  48. TOOLSON, E. C. 1982. Effects of rearing temperature on cuticle permeability and epicuticular lipid composition inDrosophila pseudoobscura.J. Exp. Zool. 222:249–253.Google Scholar
  49. TOOLSON, E. C., and HADLEY, N. F. 1979. Seasonal effects on cuticular permeability and epicuticular lipid composition inCenturoides sculpteratus Ewing 1928 (Scorpiones: Buthidae).J. Comp. Physiol. 129:319–325.Google Scholar
  50. TOOLSON, E. C., and KUPER-SIMBRON, R. 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability inDrosophila pseudoobscura: Effects of sexual dimorphism and thermal-acclimation ability.Evolution 43:468–472.Google Scholar
  51. TOOLSON, E. C., MARKOW, T. A., JACKSON, L. L., and HOWARD, R. W. 1990. Epicuticular hydrocarbon composition of wild and laboratory-rearedDrosophila mojavensis Patterson and Crow (Diptera: Drosophilidae).Ann. Entomol. Soc. Am. 83:1165–1176.Google Scholar
  52. WALTER, M. F., BLACK, B. C., AFSHAR, G., KERMABON, A.-Y., WRIGHT, T. R. F., and BIESSMAN, H. 1991. Temporal and spatial expression of theyellow gene in correlation with cuticle formation and DOPA decarboxylase activity inDrosophila development.Dev. Biol. 147:32–45.Google Scholar
  53. WASSERMAN, M., and KOEPFER, H. R. 1977. Character displacement for sexual isolation betweenDrosophila mojavensis andDrosophila arizonensis.Evolution 31:812–823.Google Scholar
  54. WU, C.-I., HOLLOCHER, H., BEGUN, D. J., AQUADRO, C. F., XU, Y., and WU, M.-L. 1995. Sexual isolation inDrosophila melanogaster. A possible case of incipient speciation.Proc. Natl. Acad. Sci. U.S.A. 92:2519–2523.Google Scholar
  55. ZOUROS, E., and D'ENTREMONT, C. J. 1974. Sexual isolation among populations ofDrosophila mojavensis race B.Dros. Inf. Serv. 51:112.Google Scholar
  56. ZOUROS, E., and D'ENTREMONT, C. J. 1980. Sexual isolation among populations ofDrosophila mojavensis: Response to pressure from a related species.Evolution 34:421–430.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Melissa D. Stennett
    • 1
  • William J. Etges
    • 1
  1. 1.Department of Biological SciencesUniversity of ArkansasFayetteville

Personalised recommendations