Journal of Fusion Energy

, Volume 17, Issue 1, pp 25–32 | Cite as

A Review of Confinement Requirements for Advanced Fuels

  • W. M. Nevins


The energy confinement requirements for burning D-3He, D-D, or P-11B are reviewed, with particular attention to the effects of helium ash accumulation. It is concluded that the DT cycle will lead to the more compact and economic fusion power reactor. The substantially less demanding requirements for ignition in DT (the ne τE T required for ignition in DT is smaller than that of the nearest advanced fuel, D-3He, by a factor of 50) will allow ignition, or significant fusion gain, in a smaller device; while the higher fusion power density (the fusion power density in DT is higher than that of D-3He by a factor of 100 at the same plasma pressure) allows for a more compact and economic device at fixed fusion power.

Confinement requirements advanced fuels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For an early survey of advanced fuel cycles, see J. Rand McNally, Jr, Nuclear Fusion, 11, 187 (1971).Google Scholar
  2. 2.
    See, for example, R. Najmabadi et al., The ARIES-III D-3He Tokamak Reactor Study. UCLA-PPG-1386, UCLA (Dec. 1991).Google Scholar
  3. 3.
    R. O. Pepin et al., Science, 167, 550 (1970).Google Scholar
  4. 4.
    L. J. Wittenberg, J. F. Santariu, and G. L. Kulcinski, Fusion Technology, 10, 167 (1986).Google Scholar
  5. 5.
    W. Kernbichler, R. Feldbacher, and M. Heindler, Plasma Physics and Controlled Nuclear Fusion Research 1984, IAEA, Vienna (1985), 3, 429.Google Scholar
  6. 6.
    See, for example, J. M. Dawson, in Fusion (Vol. 1, Part B), E. Teller (ed.). (Academic Press, New York, 1981), p. 453.Google Scholar
  7. 7.
    The DT, DD, and D3He fusion cross-sections follow H. S. Bosch and G. M. Hale, Nuclear Fusion, 32, 611 (1992); the p11B cross-section follows from H. W. Becker, C. Rolfs, and H. P. Trautvetter, Zeitschrift für Physik A, 327, 341 (1987).Google Scholar
  8. 8.
    See, for example, N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw Hill, New York, 1973).Google Scholar
  9. 9.
    T. Rider, PhD thesis, Massachusetts Institute of Technology (1995); T. Rider, Phys. Plasmas, 4, 1039 (1997).Google Scholar
  10. 10.
    W. M. Nevins, Phys. Plasmas, 2, 3804 (1995).Google Scholar
  11. 11.
    See, for example, R. W. Bussard and N. A. Krall, Fusion Technol., nol., 26, 1326 (1994); B. C. Maglich, Nuclear Instrum. Methods A, 271, 13 (1988); D. C. Barnes, R. A. Nebel, and L. Turner, Phys. Fluids B, 5, 3651 (1993); N. Rostocker, F. Wessel, H. Rahman, B. C. Maglich, B. Spivey, and A. Fisher, Phys. Rev. Lett., 70, 1818 (1993).Google Scholar
  12. 12.
    J. M. Davidson, H. L. Berg, M. M. Lowry, M. R. Dwarakanth, A. J. Sierk, and P. Batay-Csorba, Nuclear Physics A, 315, 253 (1979).Google Scholar
  13. 13.
    J. D. Lawson, Proc. Phys. Soc. London, 70B, 6 (1957).Google Scholar
  14. 14.
    M. I. Knotek et al., A Restructured Fusion Energy Sciences Program. Fusion Energy Advisory Committee (January 1966).Google Scholar
  15. 15.
    B. A. Trubnikov, “Universal Coefficients for Synchrotron Emission from Plasma Configurations”, in Reviews of Plasma Physics (Vol. 7), M. A. Leontovitch (ed.) (Consultants Bureau, New York, 1979), pp. 345–379.Google Scholar
  16. 16.
    N. A. Uckan et al., ITER Physics Design Guidelines: 1989, ITER Documentation Series No. 10 (IAEA, Vienna, 1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • W. M. Nevins

There are no affiliations available

Personalised recommendations