, Volume 12, Issue 1–4, pp 199–208 | Cite as

Effects of Dietary PCB Exposure on Adrenocortical Function in Captive American Kestrels (Falco sparverius)

  • Oliver P. Love
  • Laird J. Shutt
  • Joel S. Silfies
  • Gary R. Bortolotti
  • Judit E.G. Smits
  • David M. Bird


We experimentally examined the effects of dietary exposure to polychlorinated biphenyls (PCBs) on adrenocortical function in American kestrels (Falco sparverius). Nine captive male American kestrels previously exposed to a PCB mixture (Aroclor™1248:1254:1260; 1:1:1) in their diet were subjected to a standardized capture, handling and restraint protocol designed to produce an increase in circulating corticosterone. A similar protocol has been applied to a wide range of avian species and was used here to evaluate the response of PCB-exposed and control kestrels to a defined physical stressor. Both baseline and stress-induced corticosterone levels were significantly lower in PCB-exposed birds when compared with control birds of the same age. PCB-exposed birds exhibited significantly lower corticosterone levels during the corticosterone response when compared with control birds, independent of body condition. Furthermore, baseline corticosterone concentrations exhibited a hormetic response characterized by an inverted U-shaped dose response in relation to total PCB liver burden. These results support several recent studies which report decreased levels of circulating corticosterone in PCB-exposed wild birds. The results presented here provide the first evidence that exposure to an environmentally relevant level of PCBs (approximately 10 mg/kg body weight) can impair the corticosterone stress response in kestrels, potentially increasing the susceptibility of birds to environmental stressors such as severe weather and predatory and human disturbance.

polychlorinated biphenyl Hypothalamo-Pituitary-Adrenal (HPA) axis corticosterone hormesis American kestrel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astheimer, L.B., Buttemer, W.A. and Wingfield, J.C. (1992). Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand. 23, 355-65.Google Scholar
  2. Astheimer, L.B., Buttemer, W.A. and Wingfield, J.C. (1994). Gender and seasonal differences in the adrenocortical response to ACTH challenge in an Arctic passerine, Zonotrichia leucophyrs gambelii. Gen. Comp. Endocrinol. 94, 33-43.Google Scholar
  3. Astheimer, L.B., Buttemer, W.A. and Wingfield, J.C. (1995). Seasonal and acute changes in adrenocortical responsiveness in an Arctic-breeding bird. Horm. Behav. 29, 442-57.Google Scholar
  4. Bergman, A. and Olsson, M. (1985). Pathology of Baltic grey seal and ring seal females with special reference to adrenocortical hyperplasia: is environmental pollution the cause of a widely distributed disease syndrome? Finn. Game Res. 44, 47-62.Google Scholar
  5. Bird, D.M. and Palmer, R.S. (1988). American kestrel. In R.S. Palmer (eds.) Handbook of North American Birds: Diurnal Raptors, Vol. 5, pp. 253-90. New Haven, Connecticut: University Press Yale.Google Scholar
  6. Bowerman, W.W., Giesy, J.P., Best, D.A. and Kramer, V.J. (1995). A review of factors affecting productivity of bald eagles in the Great Lakes region: implications for recovery. Environ. Health Perspect. 103(Suppl. 4), 51-9.Google Scholar
  7. Bray, M.M. (1993). Effect of ACTH and glucocorticoids on lipid metabolism in the Japanese quail, Coturnix coturnix japonica. Comp. Physiol. Biochem. A. 105, 689-96.Google Scholar
  8. Calabrese, E.J. and Baldwin, L.A. (1999). Reevaluation of the fundamental dose-response relationship. Bioscience 49, 725-32.Google Scholar
  9. Calabrese, E.J., Baldwin, L.A. (2001a). The frequency of U-shaped dose responses in the toxicological literature. Toxicol. Sci. 62, 330-8.Google Scholar
  10. Calabrese, E.J. and Baldwin, L.A. (2001b). Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol. Sci. 22, 285-91.Google Scholar
  11. Civen, M. and Brown, C.B. (1974). The effect of organophosphate insecticides on adrenal corticosterone formation. Pest Biochem. Physiol. 4, 254.Google Scholar
  12. Civen, M., Lifrak, E. and Brown, C.B. (1977). Studies on the mechanism of inhibition of adrenal steroidogenesis by organophosphate and carbamate compounds. Pest Biochem. Physiol. 7, 169-82.Google Scholar
  13. Cockrem, J.F. and Silverin, B. (2002). Variation within and between birds in corticosterone responses of great tits (Parus major). Gen. Comp. Endocrinol. 125, 197-206.Google Scholar
  14. Colby, H.D. and Longhurst, P.A. (1996). Toxicology of the adrenal gland. In C.K. Atterwill and J.D. Flack (eds) Endocrine Toxicology, pp. 243-81. Cambridge: Cambridge University Press.Google Scholar
  15. Dallman, M.F., Akana, S.F., Cascio, C.S., Darlington, D.N., Jacobson, L. and Levin, N. (1987). Regulation of ACTH secretion: variations on a theme of B. Rec. Progr. Horm. Res. 43, 113-73.Google Scholar
  16. Deviche, P., Breuner, C. and Orchinik, M. (2001). Testosterone, corticosterone, and photoperiod interact to regulate plasma levels of binding globulin and free steroid hormone in dark-eyed juncos, Junco hyemalis. Gen. Comp. Endocrinol. 122, 67-77.Google Scholar
  17. Drouillard, K.G., Fernie, K., Smits, J.E., Bortolotti, G.R., Bird, D.M. and Norstrom, R.J. (2001). Bioaccumulation and toxicokinetics of 42 PCB congeners in American kestrels (Falco sparverius). Environ. Toxicol. Chem. 20, 2514-22.Google Scholar
  18. Dufty, A.M. Jr. and Belthoff, J.R. (1997). Corticosterone and the stress response in young Western screech-owls: effects of captivity, gender, and activity period. Physiol. Zool. 70, 143-9.Google Scholar
  19. Fernie, K.L., Bortolotti, G.R., Smits, J.E., Wilson, J., Drouillard, K.G. and Bird, D.M. (2000). Changes in egg composition of American kestrels exposed to dietary polychlorinated biphenyls. J. Toxicol. Environ. Health Part A. 60(4), 291-303.Google Scholar
  20. Fisher, S.A., Bortolotti, G.R., Fernie, K.J., Smits, J.E., Marchant, T.A., Drouillard, K.G. and Bird, D.M. (2001). Courtship behavior of captive American kestrels (Falco sparverius) exposed to polychlorinated biphenyls. Arch. Environ. Contam. Toxicol. 41, 215-20.Google Scholar
  21. Fox, G.A., Collins, B., Hayakawa, E., Weseloh, D.V., Ludwig, J.P., Kubiak, T.J. and Erdman, T.C. (1991). Reproductive outcomes in colonial fish-eating birds: a biomarker for developmental toxicants in Great lakes food chains. J. Gt. Lakes Res. 17, 158-67.Google Scholar
  22. Gendron, A.D., Bishop, C.A., Fortin, R. and Hontela, A. (1997). In vivo testing of the functional integrity of the corticosterone-producing axis in mudpuppy (Amphibia) exposed to chlorinated hydrocarbons in the wild. Environ. Toxicol. Chem. 16, 1694-706.Google Scholar
  23. Giesy, J.P., Ludwig, J.P. and Tillitt, D.E. (1994). Deformities in birds of the Great Lakes region: assigning causality. Environ. Sci. Technol. 28, 128-35.Google Scholar
  24. Gilbertson, M., Kubiak, T., Ludwig, J. and Fox, G. (1991). Great Lakes embryo mortality, edema and deformities syndrome (GLEMEDS) in colonial fish-eating birds: similarity to chick-edema disease. J. Toxicol. Environ. Health 33, 455-520.Google Scholar
  25. Gorsline, J. and Holmes, W.N. (1981). Effects of petroleum on adrenocortical activity and on hapatic Naphtalene-metabolizing activity in mallard ducks. Arch. Environ. Contam. Toxicol. 10, 765-77.Google Scholar
  26. Gorsline, J. and Holmes, W.N. (1982). Adrenocortical function and hepatic Naphthalene metabolism in mallard ducks (Anas platyrhynchos) consuming petrolem distillates. Environ. Res. 28, 139-46.Google Scholar
  27. Grasman, K.A., Fox, G.A., Scanlon, P.F. and Ludwig, J.P. (1996). Organochlorine-associated immunosuppression in prefledging Caspian terns and herring gulls from the Great lakes: an ecoepidemiological study. Environ. Health Perspect. 104(Suppl. 4), 829-43.Google Scholar
  28. Grasman, K.A., Scanlon, P.F. and Fox, G.A. (1998). Reproductive and physiological effects of environmental contaminants in fish-eating birds in the Great lakes: a review of historical trends. Environ. Monitor. Assess. 53, 117-45.Google Scholar
  29. Gray, J.M., Yarian, D. and Ramenofsky, (1990). Corticosterone, foraging behavior and metabolism in dark-eyed juncos, Junco hyemalis. Gen. Comp. Endocrinol. 79, 375-84.Google Scholar
  30. Harris, H.J., Erdman, T.C., Ankley, G.T. and Lodge, K.B. (1993). Measures of reproductive success and polychlorinated biphenyl residues in eggs and chicks of Forster's terns on Green Bay, Lake Michigan, Wisconsin-1988. Arch. Environ. Contam. Toxicol. 25, 304-14.Google Scholar
  31. Hart, M.M., Reagan, R.L. and Adamson, R.H. (1973). The effect of isomers of DDD on the ACTH-induced steroid output, histology and ultrastructure of the dog adrenal cortex. Toxicol. Appl. Pharmacol. 24, 101-13.Google Scholar
  32. Harvey, S., Phillips, A., Rees, A. and Hall, T.R. (1984). Stress and adrenal function. Exp. Zool. 232, 633-45.Google Scholar
  33. Heath, J.A. and Dufty, M.A. Jr. (1998). Body condition and the adrenal stress response in captive American kestrel juveniles. Physiol. Zool. 71, 67-73.Google Scholar
  34. Hoffman, D.J., Melancon, M.J., Klein, P.N., Eisemann, J.D. and Spann, J.W. (1998). Comparative developmental toxicity of planar polychlorinated biphenyl congeners in chicken, American kestrels and common terns. Environ. Toxicol. Chem. 17, 747-57.Google Scholar
  35. Hoffman, D.J., Smith, G.J. and Rattner, B.A. (1993). Biomarkers of contaminant exposure in common terns and black-crowned night herons in the Great Lakes. Environ. Toxicol. Chem. 12, 1095-103.Google Scholar
  36. Holmes, W.N., Cavanaugh, K.P. and Cronshaw, J. (1978). The effects of ingested petroleum on oviposition and some aspects of reproduction in experimental colonies of mallard ducks (Anas platyrhynchos). J. Reprod. Fert. 54, 335-47.Google Scholar
  37. Holmes, W.N., Gorsline, J. and Cronshaw, J. (1979). Effects of mild cold stress on the survival of seawater-adapted mallard ducks (Anas platyrhynchos) maintained on food contaminated with petroleum. Environ. Res. 20, 425-44.Google Scholar
  38. Hontela, A. (1997). Endocrine and physiological responses of fish to xenobiotics: role of glucocorticosteroid hormones. In Reviews in Toxicology—Environmental Toxicology, pp. 1-46. New York: IOS Press.Google Scholar
  39. Hontela, A., Rasmussen, J.B., Audet, C. and Chevalier, G. (1992). Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs and mercury. Arch. Environ. Contam. Toxicol. 22, 278-83.Google Scholar
  40. Kitaysky, A.S., Piatt, J.F., Wingfield, J.C. and Romano, M. (1999). The adrenocortical stress response of Black-legged Kittiwake chicks in relation to dietary restrictions. J. Comp. Physiol. B. 169, 303-10.Google Scholar
  41. Kubiak, T.J., Harris, H.J., Smith, L.M., Schwartz, T.R., Stalling, D.L., Trick, J.A., Sileo, L., Docherty, D.E. and Erdman, T.C. (1989). Microcontaminants and reproductive impairment of the Forster's tern in Green Bay, Lake Michigan—1983. Arch. Environ. Contam. Toxicol. 15, 313-20.Google Scholar
  42. Kurita, H., Ludwig, J.P. and Ludwig, M.E. (1987). Results of the 1987 Michigan colonial waterbird monitoring project on Caspian terns and double-crested cormorants: egg incubation and field studies of colony productivity, embryologic mortality and deformoities. Ecological Research Services. Report to Mich. Dept. Nat. Res.Google Scholar
  43. Lorenzen, A., Moon, T.W., Kennedy, S.W. and Fox, G.A. (1999). Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations and intermediary metabolic activities in Great Lakes Herring gull embryos. Environ. Health Perspect. 107, 179-86.Google Scholar
  44. Lorenzen, A., Shutt, L.J. and Kennedy, S.W. (1997). Sensitivity of common tern (Sterna hirundo) embryo hepatocyte cultures to CYP1A induction and porphyrin accumulation by halogenated aromatic hydrocarbons and common tern egg extracts. Arch. Environ. Contam. Toxicol. 32, 126-34.Google Scholar
  45. Love, O.P., Bird, D.M. and Shutt, L.J. (2003). Corticosterone levels during post-natal development in captive American kestrels (Falco sparverius). Gen. Comp. Endocrinol. (in press).Google Scholar
  46. Ludwig, J.P., Auman, H.J., Weseloh, D.V., Fox, G.A., Giesy, J.P. and Ludwig, M.E. (1995). Evaluation of the effects of toxic chemicals in Great Lakes cormorants: has causality been established? Col. Waterbirds 18, 60-9.Google Scholar
  47. Piersma, T. and Ramenofsky, M. (1998). Long-term decreases of corticosterone in captive migrant shorebirds that maintain seasonal mass and moult cycles. J. Avian Biol. 29, 97-104.Google Scholar
  48. Rehder, N.B., Bird, D.M. and Lague, P.C. (1986). Variations in plasma corticosterone, estrone, estradiol-17β, and progesterone concentrations with forced renesting, molt and body weight of captive female American kestrels. Gen. Comp. Endocrinol. 62, 386-93.Google Scholar
  49. Ribelin, W.E. (1984). The effects of drugs and chemicals upon the structure of the adrenal gland. Fundam. Appl. Toxicol. 4, 105-19.Google Scholar
  50. Rogers, C.M., Ramenofsky, M., Ketterson, E.D., Nolan, V. Jr and Wingfield, J.C. (1993). Plasma corticosterone, adrenal mass, winter weather and season in non-breeding populations of dark-eyed juncos (Junco hyemalis). Auk 110, 279-85.Google Scholar
  51. Romero, L.M. and Wingfield, J.C. (1998). Seasonal changes in adrenal sensitivity alter corticosterone levels in Gambels's white-crowned sparrows (Zonotrichia leucophrys gambelii). Comp. Biochem. Physiol. 119C, 31-6.Google Scholar
  52. Safe, S. (1986). Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans. Ann. Rev. Pharm. Toxicol. 26, 371-99.Google Scholar
  53. Sapolsky, R.M. (1992). Neuroendocrinology of the stress-response. In J.B. Becker, S.M. Breedlove and D. Crews (eds) Behavioural Endocrinology, pp. 287-324. Boston, Massachusetts: MIT Press.Google Scholar
  54. Sapolsky, R.M., Krey, L.C. and McEwen, B.S. (1986). The neuroendocrinology of stress and aging: the glucocorticosteroid cascade hypothesis. Endocr. Rev. 7, 284-301.Google Scholar
  55. Schwabl, H. (1995). Individual variation of the acute adrenocortical response to stress in the white-throated sparrow. Zoology 99, 113-20.Google Scholar
  56. Schwabl, H. (1999). Developmental changes and among-sibling variation of corticosterone levels in an altricial avian species. Gen. Comp. Endocrinol. 116, 403-8.Google Scholar
  57. Schwabl, H., Bairlein, F. and Gwinner, E. (1991). Basal and stress-induced corticosterone levels of garden warblers, Sylvia borin, during migration. J. Comp. Physiol. 161, 576-80.Google Scholar
  58. Silverin, B. (1997). The stress response and autumnal dispersal behaviour in willow tits. Anim. Behav. 53, 451-9.Google Scholar
  59. Silverin, B. (1998a). Stress response in birds. Poul. Av. Biol. Rev. 9, 153-68.Google Scholar
  60. Silverin, B. (1998b). Behavioural and hormonal responses of the pied flycatcher to environmental stressors. Anim. Behav. 55, 1411-20.Google Scholar
  61. Silverin, B., Arvidsson, B. and Wingfield, J.C. (1997). The adrenocortical responses to stress in breeding willow warblers Phylloscopus trochilus in Sweden: effects of latitude and gender. Func. Ecol. 11, 376-84.Google Scholar
  62. Silverin, B. and Wingfield, J.C. (1998). Adrenocortical responses to stress in breeding pied flycatchers, Ficedula hypoleuca: relation to latitude, sex and mating status. J. Av. Biol. 29, 228-34.Google Scholar
  63. Smith, G.T., Wingfield, J.C. and Veit, R.R. (1994). Adrenocortical response to stress in the common diving petrel, Pelecanoides urinatrix. Physiol. Zool. 67, 526-37.Google Scholar
  64. Smits, J.E.G. and Bortolotti, G.R. (2001). Antibody-mediated immunotoxicity in American kestrels (Falco sparverius) exposed to polychlorinated biphenyls. J. Toxicol. Environ. Health, Part A 62, 217-26.Google Scholar
  65. Sockman, K. W. and Schwabl, H. (2001). Plasma corticosterone in nestling American kestrels: effects of age, handling stress, yolk androgens, and body condition. Gen. Comp. Endocrinol. 122, 205-12.Google Scholar
  66. Sokal, R.R. and Rohlf, F.J. (1995). Biometry. San Francisco: W.H. Freeman.Google Scholar
  67. Tillitt, D.E., Ankley, G.T., Verbrugge, D.A., Giesy, J.P., Ludwig, J.P. and Kubiak, T.J. (1991). H4IIE rat hepatoma cell bioassay-derived 2,3,7,8-tetrachlorodibezo-p-dioxin equivalents in colonial fish-eating waterbird eggs from the Great Lakes. Arch. Environ. Contam. Toxicol. 21, 91-101.Google Scholar
  68. Wingfield, J.C. (1994). Modulation of the adrenocortical response to stress in birds. In K.G. Davey, R.E. Peter and S.S. Tobe (eds) Perspectives in Comparative Endocrinology, pp. 520-8. Ottawa: National Research Council of Canada.Google Scholar
  69. Wingfield, J.C., Moore, M.C. and Farner, D.S. (1983). Endocrine responses to inclement weather in naturally breeding populations of white-crowned sparrows (Zonotrichia leucophyrs pugetensis). Auk 100, 56-62.Google Scholar
  70. Wingfield, J.C., O'Reilly, K.M. and Astheimer, L.B. (1995). Modulation of the adrenocortical responses to acute stress in arctic birds: a possible ecological basis. Am. Zool. 35, 285-94.Google Scholar
  71. Wingfield, J.C., Vleck, C.M. and Moore, M.C. (1992). Seasonal changes in the adrenocortical response to stress in birds of the Sonoran desert. J. Exp. Zool. 264, 419-28.Google Scholar
  72. Wingfield, J.C., Deviche, P., Sharbough, S., Astheimer, L.B., Holberton, R.L., Suydam, R. and Hunt, K. (1994). Seasonal changes in the adrenocortical responses to stress in redpolls (Acanthis flammea) in Alaska. J. Exp. Zool. 270, 372-80.Google Scholar
  73. Won, H.T., Mulvihill, M.J. and Wakeford, B.J. (2001). Multi-residue methods for the determination of chlorinated pesticides and polychlorinated biphenyls (PCBs) in wildlife tissues by Gas chromatography/Mass spectrometry. Technical Report. Series No. 335E, Canadian Wildlife Service, Headquarters, Hull, Quebec, Canada.Google Scholar
  74. Yamashita, N., Tanabe, S., Ludwig, J.P., Kurita, H., Ludwig, M.E. and Tatsukawa, R. (1993). Embryonic abnormalities and organochlorine contamination in double-crested cormorants (Phalacrocorax auritus) and Caspian terns (Hydroprogne caspia) from the upper Great Lakes in 1988. Environ. Pollut. 79,163-73.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Oliver P. Love
    • 1
  • Laird J. Shutt
    • 2
  • Joel S. Silfies
    • 3
  • Gary R. Bortolotti
    • 4
  • Judit E.G. Smits
    • 5
  • David M. Bird
    • 1
  1. 1.Avian Science and Conservation CentreMcGill University, 21QuebecCanada
  2. 2.Environment Canada, Canadian Wildlife ServiceNational Wildlife Research CentreHull, QuebecCanada
  3. 3.Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  4. 4.Department of BiologyUniversity of SaskatchewanSaskatoon, SaskatchewanCanada
  5. 5.Department of Veterinary PathologyUniversity of SaskatchewanSaskatoon, SaskatchewanCanada

Personalised recommendations