Journal of Bioenergetics and Biomembranes

, Volume 29, Issue 4, pp 355–364 | Cite as

Aerobic Glycolysis by Proliferating Cells: Protection against Oxidative Stress at the Expense of Energy Yield

  • Karl Brand


Primary cultures of mitogen-activated rat thymocytes were used to study energy metabolism, gene expression of glycolytic enzymes, and production of reactive oxygen species during cell cycle progression. During transition from the resting to the proliferating state a 7- to 10-fold increase of glycolytic enzyme induction occurs which enables the cells to meet the enhanced energy demand by increased aerobic glycolysis. Cellular redox changes have been found to regulate gene expression of glycolytic enzymes by reversible oxidative inactivation of Spl-binding to the cognate DNA-binding sites in the promoter region. In contrast to nonproliferating cells, production of phorbol 12-myristate 13-acetate (PMA)-primed reactive oxygen species (ROS) in proliferating rat thymocytes and HL-60 cells is nearly abolished. Pyruvate, a product of aerobic glycolysis, is an effective scavenger of ROS, which could be shown to be generated mainly at the site of complex III of the mitochondrial respiratory chain. Aerobic glycolysis by proliferating cells is discussed as a means to minimize oxidative stress during the phases of the cell cycle when maximally enhanced biosynthesis and cell division do occur.

Proliferating cells energy supply aerobic glycolysis reactive oxygen species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisenberg, A. C. (1961). The Glycolysis and Respiration of Tumors, Academic Press, London.Google Scholar
  2. Ammendola, R., Mesuraca, M., Russo, T., and Cimino, F. (1994). Eur. J. Biochem. 225, 483–489.Google Scholar
  3. Andrae, U., Singh, J., and Ziegler-Skylakakis, K. (1985). Toxicol. Lett. 28, 93–98.Google Scholar
  4. Ardawi, M. S., and Newsholme, E. A. (1982). Biochem. J. 208, 743–748.Google Scholar
  5. Argiles, J. M., and Lopez-Soriano, F. J. (1990). Med. Hypotheses 32, 151–155.Google Scholar
  6. Arora, K. K., and Pedersen, P. L. (1988). J. Biol. Chem. 263, 17422–17428.Google Scholar
  7. Ashizawa, K., Willingham, M. C., Liang, C. M., and Cheng, S. Y. (1991). J. Biol. Chem. 266, 16842–16846.Google Scholar
  8. Baggetto, L. G. (1992). Biochimie 74, 959–974.Google Scholar
  9. Balinsky, D., Platz, C. E., and Lewis, J. W. (1983). Cancer Res. 43, 5895–5901.Google Scholar
  10. Barron, J. T., Kopp, S. J., Tow, J. P., and Parrillo, J. E. (1991). Biochim. Biophys. Acta 1093, 125–134.Google Scholar
  11. Bartley, J. C., Barber, S., and Abraham, S. (1975). Cancer Res. 35, 1649–1653.Google Scholar
  12. Baumann, M., Jezussek, D., Lang, T., Richter, R. T., and Brand, K. (1988). Tumour Biol. 9, 281–286.Google Scholar
  13. Board, M., Humm, S., and Newsholme, E. A. (1990). Biochem. J. 265, 503–509.Google Scholar
  14. Brand, K. (1985). Biochem. J. 228, 353–361.Google Scholar
  15. Brand, K. (1987). J. Biol. Chem. 262, 15232–15235.Google Scholar
  16. Brand, M. D. (1990). Biochim. Biophys. Acta 1018, 128–133.Google Scholar
  17. Brand, K., and Hermfisse, U. (1997). FASEB J. 11, 388–395.Google Scholar
  18. Brand, K., Leibold, W., Luppa, P., Schoerner, C., and Schulz, A. (1986). Immunobiology 173, 23–34.Google Scholar
  19. Brand, K., Aichinger, S., Forster, S., Kupper, S., Neumann, B., Nürnberg, W., and Ohrisch, G. (1988). Eur. J. Biochem. 172, 695–702.Google Scholar
  20. Burk, D., Woods, M., and Hunter, J. (1967). J. Natl. Cancer Inst. 38, 839–863.Google Scholar
  21. Bustamante, E., and Pedersen, P. L. (1977). Proc. Natl. Acad. Sci. USA 74, 3735–3739.Google Scholar
  22. Bustamante, E., Morris, H. P., and Pedersen, P. L. (1981). J. Biol. Chem. 256, 8699–8704.Google Scholar
  23. Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C. (1978). Proc. Natl. Acad. Sci. USA 75, 2458–2462.Google Scholar
  24. Crabtree, H. G. (1929). Biochem. J. 23, 536–545.Google Scholar
  25. Crepin, K. M., Darville, M. I., Hue, L., and Rousseau, G. G. (1989). Eur. J. Biochem. 183, 433–440.Google Scholar
  26. Diaz-Espada, F., and Lopez-Alarcon, L. (1982). Immunology 46, 705–712.Google Scholar
  27. Dröge, W., Roth, S., Altmann, A., and Mihm, S. (1987). Cell. Immunol. 108, 405–416.Google Scholar
  28. Dunaway, G. A., and Karsten, T. P. (1985). J. Biol. Chem. 260, 4180–4185.Google Scholar
  29. Eigenbrodt, E. and Glossmann, H. (1980). Trends Pharmacol. Sci. 1, 240–245.Google Scholar
  30. Eigenbrodt, E., Gerbracht, U., Mazurek, S., Presek, P., and Friis, R. (1985). In Biochemical and Molecular Aspects of Selected Cancers, Vol. 2, Academic Press, New York, pp. 311–385.Google Scholar
  31. Gilat, D., Hershkoviz, R., Goldkorn, I., Cahalon, L., Korner, G., Vlodavsky, I., and Lider, O. (1995). J. Exp. Med. 181, 1929–1934.Google Scholar
  32. Goldstone, S. D., Fragonas, J. C., Jeitner, T. M., and Hunt, N. H. (1995). Biochim. Biophys. Acta 1263, 114–122.Google Scholar
  33. Greiner, E. F., Guppy, M., and Brand, K. (1994). J. Biol. Chem. 269, 31484–31490.Google Scholar
  34. Guppy, M., Greiner, E., and Brand, K. (1993). Eur. J. Biochem. 212, 95–99.Google Scholar
  35. Guse, A. H., Greiner, E., Emmrich, F., and Brand, K. (1993). J. Biol. Chem. 268, 7129–7133.Google Scholar
  36. Hamm-Künzelmann, B., Schäfer, D., Weigert, C., and Brand, K. (1997). FEBS Lett. 403, 87–90.Google Scholar
  37. Hermfisse, U., Schäfer, D., Netzker, R., and Brand, K. (1996). Biochem. Biophys. Res. Commun. 225, 997–1005.Google Scholar
  38. Hue, L., and Rider, M. H. (1987). Biochem. J. 245, 313–324.Google Scholar
  39. Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. J. (1997). Science 275, 1649–1652.Google Scholar
  40. Krebs, H. A. (1981). In Glutamine: Metabolism, Enzymology and Regulation (Mora, J., and Palacios, R., eds.), Academic Press, New York, pp. 319–329.Google Scholar
  41. LaNoue, K. F., Hemington, J. G., Onishi, T., Morris, H. P., and Williamson, J. R. (1977). In Hormones and Cancer, Academic Press, New York, pp. 311–385.Google Scholar
  42. Los, M., Schenk, H., Hexel, K., Baeuerle, P. A., Dröge, W., and Schulze-Osthoff, K. (1995). EMBO J. 14, 3731–3740.Google Scholar
  43. Marjanovic, S., Wielburski, A., and Nelson, B. D. (1988). Biochim. Biophys. Acta 970, 1–6.Google Scholar
  44. Marjanovic, S., Wollberg, P., Skog, S., Heiden, T., and Nelson, B. D. (1993). Arch. Biochem. Biophys. 302, 398–401.Google Scholar
  45. Mazurek, S., Michel, A. and Eigenbrodt, E. (1997). J. Biol Chem. 272, 4941–4952.Google Scholar
  46. McKeehan, W. L. (1982). Cell. Biol. Int. Rep. 6, 635–650.Google Scholar
  47. Mujica, A., Moreno-Rodriguez, R., Naciff, J., Neri, L., and Tash, J. S. (1991). J. Reprod. Fertil. 92, 75–87.Google Scholar
  48. Netzker, R., Greiner, E., Eigenbrodt, E., Noguchi, T., Tanaka, T., and Brand, K. (1992). J. Biol. Chem. 267, 6421–6424.Google Scholar
  49. Netzker, R., Hermfisse, U., Wein, K. H., and Brand, K. (1994). Biochim. Biophys. Acta 1224, 371–376.Google Scholar
  50. Netzker, R., Weigert, C., and Brand, K. (1997). Eur. J. Biochem. 245, 174–181.Google Scholar
  51. Noguchi, T. Inoue, H., Nakamura, Y., Chen, H. L., Matsubara, K., and Tanaka, T. (1984). J. Biol. Chem. 259, 2651–2655.Google Scholar
  52. O'Donnell-Tormey, J., Nathan, C. F., Lanks, K., DeBoer, C. J., and De La Harpe, J. (1987). J. Exp. Med. 165, 500–514.Google Scholar
  53. Ouchi, M., and Ishibashi, S. (1975). Biochem. J. 149, 481–483.Google Scholar
  54. Oude-Weernink, P. A., Rijksen, G., and Staal, G. E. (1991). Tumour Biol. 12, 339–352.Google Scholar
  55. Pedersen, P. L. (1978). Prog. Exp. Tumor Res. 22, 190–274.Google Scholar
  56. Poli, V., Mancini, F. P., and Cortese, R. (1990). Cell 63, 643–653.Google Scholar
  57. Racker, E. (1976). J. Cell Physiol. 89, 697–700.Google Scholar
  58. Reitzer, L. J., Wice, B. M., and Kennell, D. (1979). J. Biol. Chem. 254, 2669–2676.Google Scholar
  59. Reitzer, L. J., Wice, B. M., and Kennell, D. (1980). J. Biol. Chem. 255, 5616–5626.Google Scholar
  60. Rose, I. A., and Warms, V. B. (1967). J. Biol. Chem. 242, 1635–1645.Google Scholar
  61. Schäfer, D., Hamm-Künzelmann, B., Hermfisse, U., and Brand, K. (1996). FEBS Lett. 391, 35–38.Google Scholar
  62. Schöbitz, B., Netzker, R., Hannappel, E., and Brand, K. (1991). Eur. J. Biochem. 199, 257–262.Google Scholar
  63. Schulze-Osthoff, K., Bakker, A. C., Vanhaesebroeck, B., Beyaert, R., Jacob, W. A., and Fiers, W. (1992). J. Biol. Chem. 267, 5317–5323.Google Scholar
  64. Seshagiri, P. B., and Bavister, B. D. (1991). Mol. Reprod. Dev. 30, 105–111.Google Scholar
  65. Tollefsbol, T. O., and Cohen, H. J. (1985). J. Cell Physiol. 123, 417–424.Google Scholar
  66. Wang, T., Marquardt, C. and Foker, J. (1976). Nature 261, 702–705.Google Scholar
  67. Warburg, O. (1929). Biochem. Z. 204, 482–483.Google Scholar
  68. Warburg, O. (1930). The Metabolism of Tumors, Arnold Constable, London.Google Scholar
  69. Warburg, O., Poesener, K., and Negelein, E. (1924). Biochem. Z. 152, 309–344.Google Scholar
  70. Weber, G. (1977). N. Engl. J. Med. 296, 486–492 and 541–551.Google Scholar
  71. Weber, G. and Morris, H. P. (1963). Cancer Res. 23, 987–994.Google Scholar
  72. Weinhouse, S. (1966). Gann Monogr. 1, 99–115.Google Scholar
  73. Weinhouse, S. (1976). Z. Krebsforsch. Klin, Onkol. 87, 115–126.Google Scholar
  74. Zielke, H. R., Zielke, C. L., and Ozand, P. T. (1984). Fed. Proc. 43, 121–125.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Karl Brand
    • 1
  1. 1.Institute of Biochemistry, Medical FacultyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations