Advertisement

Journal of Algebraic Combinatorics

, Volume 1, Issue 3, pp 283–300 | Cite as

Matroid Shellability, β-Systems, and Affine Hyperplane Arrangements

  • Günter M. Ziegler
Article

Abstract

The broken-circuit complex is fundamental to the shellability and homology of matroids, geometric lattices, and linear hyperplane arrangements. This paper introduces and studies the β-system of a matroid, βnbc(M), whose cardinality is Crapo's β-invariant. In studying the shellability and homology of base-pointed matroids, geometric semilattices, and afflne hyperplane arrangements, it is found that the β-system acts as the afflne counterpart to the broken-circuit complex. In particular, it is shown that the β-system indexes the homology facets for the lexicographic shelling of the reduced broken-circuit complex \(\overline {BC} (M)\), and the basic cycles are explicitly constructed. Similarly, an EL-shelling for the geometric semilattice associated with M is produced,_and it is shown that the β-system labels its decreasing chains.Basic cycles can be carried over from\(\overline {BC} (M)\) The intersection poset of any (real or complex) afflnehyperplane arrangement Α is a geometric semilattice. Thus the construction yields a set of basic cycles, indexed by βnbc(M), for the union ⋃Α of such an arrangement.

matroid β-invariant broken-circuit complex shellability affine hyperplane arrangement 

References

  1. 1.
    N. Biggs, Algebraic Graph Theory, Vol. 67 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1974.Google Scholar
  2. 2.
    A. Björner, “Shellable and Cohen-Macaulay partially ordered sets,” Trans. Amer. Math. Soc. 260 (1980), 159–183.Google Scholar
  3. 3.
    A. Björner, “The homology and shellability of matroids and geometric lattices,” in Matroid Applications, N. White, ed., Cambridge University Press, Cambridge, 1992, pp. 226–283.Google Scholar
  4. 4.
    A. Björner, “Topological methods,” in Handbook of Combinatorics, R. Graham, M. Grötschel, and L. Lovász, eds., North-Holland, Amsterdam, to appear.Google Scholar
  5. 5.
    A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics, Cambridge University Press, Cambridge, 1992.Google Scholar
  6. 6.
    A. Björner, L. Lovász, and A. Yao, “Linear decision trees: volume estimates and topological bounds,” Rep. No. 5 (1991–1992), Institut Mittag-Leffler, Djursholm, 1991.Google Scholar
  7. 7.
    A. Björner and M.L. Wachs: “On lexicographically shellable posets,” Trans. Amer. Math. Soc. 277 (1983), 323–341.Google Scholar
  8. 8.
    A. Björner and G.M. Ziegler, “Broken circuit complexes: factorizations and generalizations,” J. Combin. Theory Ser. B 51 (1991), 96–126.Google Scholar
  9. 9.
    A. Björner and G.M. Ziegler, “Combinatorial stratification of complex arrangements,” J. Amer. Math. Soc. 5 (1992), 105–149.Google Scholar
  10. 10.
    T. Brylawski, “A combinatorial model for series-parallel networks,” Trans. Amer. Math. Soc. 154 (1971), 1–22.Google Scholar
  11. 11.
    T. Brylawski, “The broken-circuit complex,” Trans. Amer. Math. Soc. 234 (1977), 417–433.Google Scholar
  12. 12.
    H. Crapo, “A higher invariant for matroids,” J. Combin. Theory 2 (1967), 406–417.Google Scholar
  13. 13.
    B.H. Dayton and C.A. Weibel, “K-theory of hyperplanes, ” Trans. Amer. Math. Soc. 257 (1980), 119–141.Google Scholar
  14. 14.
    M. Goresky and R. MacPherson, Stratified Morse Theory, Series 3, Vol. 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, New York, 1988.Google Scholar
  15. 15.
    M. Laurent and M. Deza, “Bouquets of geometric lattices: some algebraic and topological aspects,” Discrete Math. 75 (1989), 279–313.Google Scholar
  16. 16.
    J.-P. Roudneff, “Cells with many facets in arrangements of hyperplanes,” Discrete Math. 98 (1991), 185–191.Google Scholar
  17. 17.
    M.L. Wachs and J.W. Walker, “On geometric semilattices,” Order 2 (1986), 367–385.Google Scholar
  18. 18.
    T. Zaslavsky, “Facing up to arrangements: face-count formulas for partitions of space by hyperplanes,” Mem. Amer. Math. Soc. 1(154) (1975).Google Scholar
  19. 19.
    G.M. Ziegler, “Combinatorial models for subspace arrangements,” Habilitationsschrift, Technical University of Berlin, Berlin, 1992.Google Scholar
  20. 20.
    G.M. Ziegler and R.T. Živaljević, “Homotopy types of subspace arrangements via diagrams of spaces,” Rep. No. 10 (1991–1992), Institut Mittag-Leffler, Djursholm, 1991, Math. Annalen, to appear.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Günter M. Ziegler
    • 1
  1. 1.Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)BerlinGermany

Personalised recommendations