Neurochemical Research

, Volume 22, Issue 5, pp 629–636 | Cite as

Effects of Electroconvulsive Stimuli and MK-801 on Neuropeptide Y, Neurokinin A, and Calcitonin Gene-Related Peptide in Rat Brain

  • A. A. Mathé
  • S. Gruber
  • P. A. Jiménez
  • E. Theodorsson
  • C. Stenfors
Article

Abstract

Rats were pretreated with 0.9% NaCl, or 0.1 or 1.0 mg/kg MK-801, an anticonvulsant and a psychotomimetic drug, and 60 minutes later given ECS or sham ECS. After six sessions the animals were sacrificed and neuropeptide Y (NPY-), neurokinin A (NKA-), and calcitonin gene-related peptide (CGRP-) like immunoreactivity (-LI) measured with radioimmunoassays. ECS increased NPY-LI in frontal cortex, striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex and hippocampus. MK-801 increased CGRP in a dose-response manner in frontal cortex, and NKA-LI in occipital cortex. Although the higher MK-801 dose reduced seizure duration by 50%, the ECS induced NPY-LI increase in striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex was not diminished. In contrast, there was a parallel decrease in seizures and NPY-LI and NKA-LI changes in frontal cortex and hippocampus, respectively. Investigation of neuropeptides in brain may contribute to understanding of the mechanisms of action of antide-pressive and antipsychotic treatments and of psychotomimetic drugs.

Rat brain electroconvulsive treatment MK-801 neuropeptide Y neurokinin A calcitonin gene-related peptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Stenfors, C., Theodorsson, E., and Mathé, A. A. 1989. Effect of repeated electroconvulsive treatment on regional concentrations of tachykinins, neurotensin, vasoactive intestinal polypeptide, neuropeptide Y, and galanin in rat brain. J. Neurosci. Res. 24:445–450.Google Scholar
  2. 2.
    Stenfors, C., Mathé, A. A., and Theodorsson, E. 1994. Repeated electroconvulsive stimuli: Changes in neuropeptide Y, neurotensin and tachykinin concentrations in time. Prog. Neuropsychopharmacol. Biol. Psych. 18:201–209.Google Scholar
  3. 3.
    Stenfors, C., Bjellerup, P., and Mathé, A. A. Theodorsson, E. 1995. Concurrent analysis of neuropeptides and biogenic amines in brain tissue of rats treated with electroconvulsive stimuli. Brain Res. 698:39–45.Google Scholar
  4. 4.
    Stenfors, C., Mathé, A. A., and Theodorsson, E. 1995. Chromatographic and immunochemical characterization of rat brain neuropeptide Y-like immunoreactivity (NPY-LI) following repeated electroconvulsive stimuli. J. Neurosci. Res. 41:206–212.Google Scholar
  5. 5.
    Theodorsson, E., Mathé, A. A., and Stenfors, C. 1990. Brain neuropeptides: Tachykinins, neuropeptide Y, neurotensin and vasoactive intestinal polypeptide in the rat brain: modifications by ECT and indomethacin. Prog. Neuropsychopharmacol. Biol. Psych. 14:387–407.Google Scholar
  6. 6.
    Stenfors, C., Theodorsson, E., and Mathé, A. A. 1992. Brain neuropeptides: Changes by treatment with the convulsants pentylenetetrazole and bicuculline. Prog. Neuropsychopharmacol. Biol. Psych. 16:747–753.Google Scholar
  7. 7.
    Zachrisson, O., Mathé, A. A., Stenfors, C., and Lindefors, N. 1995. Limbic effects of repeated electroconvulsive stimulation on neuropeptide Y and somatostatin mRNA expression in the rat brain. Molec. Brain Res. 31:71–85.Google Scholar
  8. 8.
    Zachrisson, O., Mathé, A. A., and Lindefors, N. 1997. Decreased levels of preprotachykinin-A and tachykinin NK1 receptor mRNA in specific regions of the rat striatum after electroconvulsive stimuli. Eur. J. Pharmac. 319:191–195.Google Scholar
  9. 9.
    Zachrisson, O., Mathé, A. A., and Lindefors, N. 1997. Effects of chronic lithium and electroconvulsive stimuli on cholecystokinin mRNA expression in the rat brain. Mol. Brain Res. 43:347–350.Google Scholar
  10. 10.
    Zachrisson, O., Mathé, A. A., Stenfors, C., and Lindefors, N. 1995. Region-specific effects of chronic lithium administration on neuropeptide Y and somatostatin mRNA expression in the rat brain. Neurosci. Lett. 194:87–92.Google Scholar
  11. 11.
    Mathé, A. A., Nomikos, G. G., and Svensson, T. H. 1995. Effects of acute and chronic electroconvulsive treatment on interstitial concentrations of somatostatin in the rat hippocampus and striatum. Prog. Neuropsychopharmacol. Biol. Psych. 19:323–332.Google Scholar
  12. 12.
    Mathé, A. A., Hertel, P., Nomikos, G., Mathé, J. M., and Svensson, T. H. 1994. Microdialysis of extracellular neurotensin and calcitonin gene-related peptide from the rat brain: Effects of d-amphetamine and phencyclidine. In Monitoring Molecules in Neuroscience. Proc. 6th Int. Conf. on in vivo Methods. (Eds. A. Louilot, T. Durkin, U. Spampinato, M. Cador) pp 361–362.Google Scholar
  13. 13.
    Mathé, A. A., Hertel, P., Nomikos, G. G., Gruber, S., Mathé, J. M., and Svensson, T. H. 1996. The psychotomimetic drugs d-ampethamine and phencyclidine release calcitonin gene-related peptide in the limbic forebrain of the rat. J. Neurosci. Res., 46:316–323.Google Scholar
  14. 14.
    Mathé, A. A., Rudorfer, M. V., Stenfors, C., Manji, H. K., Potter, W. C., and Theodorsson, E. 1996. Effects of electroconvulsive treatment on somatostatin, neuropeptide Y, endothelin and neurokinin A concentrations in cerebrospinal fluid of depressed patients. Depression, 3:250–256.Google Scholar
  15. 15.
    Langer, G., Karazman, R., Neumark, J., Saletu, B., Schönbeck, G., Grünberger, J., Dittrich, R., Petricek, W., Hoffmann, P., Linzmayer, L., Anderer, P., and Steinberger, K. 1995. Isoflurane narcotherapy in depressive patients refractory to conventional antidepressant drug treatment. Neuropsychology 31:182–194.Google Scholar
  16. 16.
    Hoffmann, O., Johnson, L., Mebius, C., Stenfors, C., Vinnars, E., and Mathé, A. A. 1991. Isoflurane and electroconvulsive treatment in depression: A pilot study. In Pharmacotherapies, Psychotherapies, Other Therapies. (Eds. C.N. Stefanis, G. R. Soldatos, A. D. Rabavilas), Excerpta Medica, pp 480–486.Google Scholar
  17. 17.
    Stenfors, C., Srinivasan, G. R., Theodorsson, E., and Mathé, A. A. 1992. Electroconvulsive stimuli and brain peptides: Effect of modification of seizure duration on neuropeptide Y, neurokinin A, substance P and neurotensin. Brain Res. 596:251–258.Google Scholar
  18. 18.
    Clineschmidt, B. V., Martin, E., and Bunting, P. R. 1982. Anticonvulsant activity of (+)-5-methyl-10, 11-dihydro-5H-dibenzo(a,d)cyclohepten-5, 10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Develop. Res. 2:123–134.Google Scholar
  19. 19.
    Löscher, Q., Annies, R., and Hönack, D. 1991. The N-methyl-D-aspartate receptor antagonist MK-801 induces increases in dopamine and serotonin metabolism in several brain regions or rats. Neurosci. Lett. 128:191–194.Google Scholar
  20. 20.
    McNamara, J. O., Russell, R. D., Rigsbee, L., and Bonhaus, D. W. 1988. Anticonvulsant and antiepileptogenic actions of MK-801 in the kindling and electroshock models. Neuropharmacology 27:563–568.Google Scholar
  21. 21.
    Nomikos, G. G., Mathé, A. A., Mathé, J. M., and Svensson, T. H. 1992. MK-801 prevents the enhanced behavioural response to apomorphine elicited by repeated electroconvulsive treatments in mice. Psychopharmacology 108:367–370.Google Scholar
  22. 22.
    Theodorsson, E., Stenfors, C., and Mathé, A. A. 1990. Microwave irradiation increases recovery of neuropeptides from brain tissues. Peptides 11:1191–1197.Google Scholar
  23. 23.
    Mathé, A. A., Stenfors, C., Brodin, E., and Theodorsson, E. 1990. Neuropeptides in brain: Effects of microwave irradiation and decapitation. Life Sci. 46:287–293.Google Scholar
  24. 24.
    Mathé, A. A., Norstedt Wikner, B., Stenfors, C., and Theodorsson, E. 1994. Effects of lithium on neuropeptide Y, neurokinin A and substance P in brain and peripheral tissues of rat. Litium 5:241–247.Google Scholar
  25. 25.
    Mathé, A. A., Ågren, H., Lindström, L., and Theodorsson, E. 1994. Increased concentration of calcitonin gene-related peptide in cerebrospinal fluid of depressed patients. A possible trait marker of major depressive disorder. Neurosci. Lett. 182:138–142.Google Scholar
  26. 26.
    Heilig, M., and Widerlöv, E. 1995. Neurobiology and clinical aspects of neuropeptide Y. Crit. Rev. Neurobiol. 9:115–136.Google Scholar
  27. 27.
    Wahlestedt, C., Heilig, M. 1995. Neuropeptide Y and related peptides. Pages 543–551, in Psychopharmacology. The Fourth Generation of Progress. F. E. Bloom, D. J. Kupfer (eds). Raven Press Ltd, New York.Google Scholar
  28. 28.
    Otsuka, M., and Yoshioka, K. 1993. Neurotransmitter functions of mammalian tachykinins. Physiol. Rev. 73:329–308.Google Scholar
  29. 29.
    Taché, Y., Holzer, P., and Rosenfeld, M. G. 1992. Calcitonin gene-related peptide. The first decade of a novel pleiotropic neuropeptide. Ann. N.Y. Acad. Sci. 657:1–561.Google Scholar
  30. 30.
    Mathé, A. A., Stenfors, C., and Theodorsson, E. 1994. Effects of NMDA receptor antagonist MK-801 on electroconvulsive treatment induced seizures and brain neuropeptides. Psychopharmacology 113:89.Google Scholar
  31. 31.
    Glowinski, J., and Iversen, L. L. 1965. Regional studies of catecholamines in the rat brain: The disposition of (3H) norepinerphine, (3H) dopamine and (3H) dopa in various regions of the brain. J. Neurochem. 13:655–669.Google Scholar
  32. 32.
    Mathé, A. A., Jousisto-Hanson, J., Stenfors, C., and Theodorsson, E. 1990. Effect of lithium on tachykinins, calcitonin gene-related peptide, and neuropeptide Y in rat brain. J. Neurosci. Res. 26:233–237.Google Scholar
  33. 33.
    Berrettini, W. H., Doran, A. R., Kelsoe, J., Roy, A., and Pickar, D. 1987. Cerebrospinal fluid neuropeptide Y in depression and schizophrenia. Neuropsychopharmacology 1:81–83.Google Scholar
  34. 34.
    Widerlöv, E., Lindström, L. H., Wahlestedt, C., and Ekman, R. 1988. Neuropeptide Y and peptide YY as possible cerebrospinal markers for major depression and schizophrenia, respectively. J. Psychiat. Res. 22:69–79.Google Scholar
  35. 35.
    Widdowson, P. S., Ordway, G. A., and Halaris, A. E. 1992. Reduced neuropeptide Y in suicide brain. J. Neurochem. 59:73–80.Google Scholar
  36. 36.
    Ordway, G. A., Stockmeier, C. A., Meltzer, H. Y., Ocerholser, J. C., Jaconetta, S., and Widdowson, P. S. 1995. Neuropeptide Y in frontal cortex is not altered in major depression. J. Neurochem. 65:1646–1650.Google Scholar
  37. 37.
    Heilig, M., Wahlestedt, C., Ekman, R., and Widerlöv, E. 1988. Antidepressant drugs increase the concentration of neuropeptide Y (NPY)-like immunoreactivity in the rat brain. Eur. J. Pharmacol. 147:465–467.Google Scholar
  38. 38.
    Widdowson, P. S., and Halaris, A. E. 1989. Increased levels of neuropeptide-Y immunoreactivity in rat brain limbic structures following antidepressant treatment. J. Neurochem. 52(Suppl):577.Google Scholar
  39. 39.
    Smilowska, M., and Legutko, B. 1991. Influence of imipramine on neuropeptide Y immunoreactivity in the rat brain. Neurosci. 41:767–771.Google Scholar
  40. 40.
    Bellmann, R., and Sperk, G. 1993. Effects of antidepressant drug treatment on levels of NPY or prepro-NPY-mRNA in the rat brain. Neurochem. Int. 22:183–187.Google Scholar
  41. 41.
    Wahlestedt, C., Karoum, F., Jaskiw, G., Wyatt, J. R., Larhammar, D., Ekman, R., and Reis, D. J. 1991. Cocaine-induced reduction of brain neuropeptide Y synthesis dependent on medial prefrontal cortex. Prog. Natl. Acad. Sci. USA, 88:2078–2082.Google Scholar
  42. 42.
    Gruber, S., and Mathé, A. A. 1996. Both antipsychotic drugs and psychotomimetic compounds affect peptides in brain. Nordic J. Psychiatry 50:106.Google Scholar
  43. 43.
    Gruber, S., Nomikos, G. G., Svensson, T. H., and Mathé, A. A. 1996. Effects of D-amphetamine and dopamine receptor antagonists on calcitonin gene-related peptide levels in ventral striatum. Pages 205–206, in Monitoring Molecules in Neuroscience. Proc. 7th Int. Conf. on in vivo Methods. J. L. Gonzáles-Mora, R. Borges, M. Mas (eds).Google Scholar
  44. 44.
    Whitton, P. S., Biggs, C. S., Pearce, B. R., and Fowler, L. J. 1992. Regional effects of MK-801 on dopamine and its metabolites studied by in vivo microdialysis. Neurosci. Lett. 142:5–8.Google Scholar
  45. 45.
    Kashiwa, A., Nishikawa, T., Nishijima, K., Umino, A., and Kiyohisa, T. 1995. Dizocilpine (MK-801) elicits a tetrodotoxin-sensitive increase in extracellular release of dopamine in rat medial frontal cortex. Neurochem. Int. 26:269–279.Google Scholar
  46. 46.
    Dai, H., Gebhardt, K., and Carey, R. J. 1995. Time course effects of MK-801: The relationship between brain neurochemistry and behavior. Brain Res. Bull. 36:175–180.Google Scholar
  47. 47.
    Jones, P. M., Ghatei, M. A., Steel, J., O'Halloran, D., Gon, G., Legon, S., Burrin, J. M., Leonhardt, U., Polak, J. M., and Bloom, S. R. 1989. Evidence for neuropeptide Y synthesis in the rat anterior pituitary and the influence of thyroid hormone status: comparison with vasoactive intestinal peptide, substance P, and neurotensin. Endocrinology 125:334–341.Google Scholar
  48. 48.
    Bowker, R. M., Wetlund, K., Sullivan, M. C., Wilber, J. F., and Coulter, J. D. 1983. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Brain Res. 288:33–48.Google Scholar
  49. 49.
    Chiba, T., and Masuko, S. 1989. Coexistence of varying combinations of neuropeptides with 5-hydroxytryptamine in neurons of the raphe pallidus et obscurus projecting to the spinal cord. Neurosci. Res. 7:13–23.Google Scholar
  50. 50.
    Lindefors, N., Brodin, E., and Ungerstedt, U. 1989. Amphetamine facilitates the in vivo release of neurokinin A in the nucleus accumbens of the rat. Eur. J. Pharmacol. 160:417–420.Google Scholar
  51. 51.
    Sharp, T., Zetterström, T., Ljungberg, T., and Ungerstedt, U. 1987. A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res. 401:322–330.Google Scholar
  52. 52.
    Haring, C., Humpel, C., Skofitsch, G., Krobath, J., Javorsky, F., and Saria A. 1991. Calcitonin gene-related peptide in the amygdaloid complex of the rat: immunohistochemical and quantitative distribution, and drug effects on calcium dependent, potassium-evoked in vitro release. Synapse 8:261–269.Google Scholar
  53. 53.
    Kresse, A., Jacobowitz, M., and Skofitsch, G. 1995. Detailed mapping of CGRP mRNA expression in rat central nervous system: Comparison with previous immunocytochemical findings. Brain Res. Bull. 36:261–274.Google Scholar
  54. 54.
    Saria, A., Bernatzky, G., Humpel, C., Haring, C., Skofitsch, G., and Panksepp, J. 1992. Calcitonin gene-related peptide in the brain. Ann. N.Y. Acad. Sci. 657:164–169.Google Scholar
  55. 55.
    Sexton, P. M. 1991. Central nervous system binding sites for calcitonin and calcitonin gene-related peptide. Mol. Neurobiol. 5:251–273.Google Scholar
  56. 56.
    Yasui, Y., Saper, C. B., and Cechetto, D. F. 1991. Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. J. Comp. Neurol. 308:293–310.Google Scholar
  57. 57.
    Deutch, A. Y., and Roth, R. 1987. Calcitonin gene-related peptide in the ventral tegmental area: selective modulation of prefrontal cortical dopamine metabolism. Neurosci. Lett. 74:169–174.Google Scholar
  58. 58.
    Drumheller, A., Menard, D., Fournier, A., and Jolicoeur, F. B. 1992. Neurochemical effects of CGRPa. Ann. N.Y. Acad. Sci. 657:546–548.Google Scholar
  59. 59.
    Kovács, A., Papp, E., and Telegdy, G. 1994. In vivo microdialysis study of effects of calcitonin gene-related peptide (CGRP) on rat striatal dopamine release. Pages 137–138, in Monitoring Molecules in Neuroscience. Proc. 6th Int. Conf. on in vivo Methods. A. Louilot, T. Durkin, U. Spampinato, M. Cador (eds.).Google Scholar
  60. 60.
    Jolicoeur, F. B., Menard, D., Fournier, A., and St-Pierre, S. 1992. Structure activity analysis of CGRP's neurobehavioral effects. Ann. N. Y. Acad. Sci. 657:154–163.Google Scholar
  61. 61.
    Clementi, G., Grassi, M., Valerio, C., Prato, A., Fiore, C. E., and Drago, F. 1992. Effects of calcitonin gene-related peptide on extrapyramidal motor system Pharmacol. Biochem. Behav. 42:545–548.Google Scholar
  62. 62.
    Kovács, A. M., and Telegdy, G. 1992. Effects of calcitonin gene-related peptide on passive avoidance behavior in rats. Ann. N. Y. Acad. Sci. 657:543–545.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. A. Mathé
    • 1
  • S. Gruber
    • 1
  • P. A. Jiménez
    • 1
  • E. Theodorsson
    • 2
  • C. Stenfors
    • 3
  1. 1.Institution of Clinical NeuroscienceKarolinska Institute-St Görans HospitalStockholmSweden
  2. 2.Department of Clinical ChemistryUniversity HospitalLinköpingSweden
  3. 3.Department of Laboratory MedicineKarolinska HospitalStockholmSweden

Personalised recommendations