Journal of Atmospheric Chemistry

, Volume 44, Issue 2, pp 131–150 | Cite as

Atmospheric Methyl Iodide at Cape Grim, Tasmania, from AGAGE Observations

  • D. S. Cohan
  • G. A. Sturrock
  • A. P. Biazar
  • P. J. Fraser
Article

Abstract

Atmospheric mixing ratios of methyl iodide (CH3I) and other methyl halides have been measured at Cape Grim, Tasmania (41°S, 145°E), since early 1998 as part of the Advanced Global Atmospheric Gases Experiment (AGAGE). This paper analyses about 1700 ambient air CH3I measurements from the 14-month period (March 1998–April 1999). Mixing ratios peaked during the summer, despite faster photolytic loss, suggesting local oceanic emissions were about 2.2–3.6 times stronger in summer than in winter. Back trajectories show that CH3I levels are strongly dependent on air mass origin, with highest mixing ratios in air from the Tasman Sea/Bass Strait region and lowest levels in air originating from the Southern Ocean at higher latitudes. CH3I mixing ratios were not well correlated with other methyl halides in unpolluted marine air. The large variations with season and air mass origin suggest that high frequency, continuous data from key locations will make a significant contribution to the understanding of sources and sinks of this important short-lived atmospheric species.

methyl iodide CH3ocean-atmosphere exchange Southern Ocean Tasman Sea/Bass Strait trajectories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M. O., Atlas, E., Harris, G. W., Helas, G., de Kock, A., Koppmann, R., Maenhaut, W., Mano, S., Pollock, W. H., Rudolph, J., Scharffe, D., Schebeske, G., and Welling, M., 1996: Methyl halide emissions from savanna fires in southern Africa, J. Geophys. Res. 101D, 23603-23613.Google Scholar
  2. Baines, P. G. and Murray, D., 1994: Modelling of the airflow over Cape Grim, in A. L. Dick and J. L. Gras (eds), Baseline Atmospheric Program (Australia) 1991, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, pp. 20-24.Google Scholar
  3. Bassford, M. R., Nickless, G., Simmonds, P., Lewis, A. C., Pilling, M. J., and Evans, M. J., 1999: The concurrent observation of methyl iodide and dimethyl sulfide in marine air; implications for sources of atmospheric methyl iodide, Atmos. Environ. 33, 2373-2383.Google Scholar
  4. Blake, D. R., Blake, N. J., Smith, T. W., Wingenter, O. W., and Rowland, F. S., 1996: Nonmethane hydrocarbon and halocarbon distributions during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange, June 1992, J. Geophys. Res. 101D, 4501-4514.Google Scholar
  5. Blake, N. J., Blake, D. R., Sive, B. C., Chen, T. Y., Rowland, F. S., Collins Jr., J. E., Sachse, G. W., and Anderson, B. E., 1996: Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region, J. Geophys. Res. 101D, 24151-24164.Google Scholar
  6. Blake, N. J., Blake, D. R., Wingenter, O. W., Sive, B. C., Kang, C. H., Thornton, D. C., Bandy, A. R., Atlas, E., Flocke, F., Harris, J. M., and Rowland, F. S., 1999: Aircraft measurements of the latitudinal, vertical, and seasonal variations of NMHCs, methyl nitrate, methyl halides and DMS during the first Aerosol Characterization Experiment (ACE-1), J. Geophys. Res. 104D, 21803-21817.Google Scholar
  7. Boers, R., 2001: Thermodynamic structure of the boundary layer at Cape Grim during ACE-1, in N. W. Tindale, R. J. Francey, and N. Derek (eds), Baseline Atmospheric Program (Australia)1997-98, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, Australia, pp. 27-34.Google Scholar
  8. Boers, R., Krummel, P. B., Siems, S. T., and Hess, G. D., 1998: Thermodynamic structure and entrainment of stratocumulus over the Southern Ocean, J. Geophys. Res. 103D, 16637-16650.Google Scholar
  9. Carpenter, L. J., Sturges, W. T., Penkett, S. A., Liss, P. S., Alicke, B., Hebestreit, K., and Platt, U., 1999: Short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to biogenic sources and halogen oxide production, J. Geophys. Res. 104D, 1679-1689.Google Scholar
  10. Chameides, W. L. and Davis, D. D., 1980: Iodine: Its possible role in tropospheric chemistry, J. Geophys. Res. 85, 7383-7398.Google Scholar
  11. Cheney, N. P., Raison, R. J., and Khanna, P. K., 1980: Release of carbon to the atmosphere in Australian vegetation fires, in G. I. Pearman (ed.), Carbon Dioxide and Climate: Australian Research, Aust. Acad. of Sci., Canberra, 153-158.Google Scholar
  12. Cohan, D. S., Schultz, M. G., Jacob, D. J., Heikes, B. G., and Blake, D. R., 1999: Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection, J. Geophys. Res. 104D, 5717-5724.Google Scholar
  13. Cox, M. L., 2001: A regional study of the natural and anthropogenic sources and sinks of the major halomethanes, PhD Thesis, Monash University, Australia.Google Scholar
  14. Cunnold, D., Weiss, R., Prinn, R., Hartley, D., Simmonds, P., Fraser, P., Miller, B., Alyea F., and Porter, L., 1997: GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992-1994, J. Geophys. Res. 102, 1259-1269.Google Scholar
  15. Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G., Weiss, R. F., Porter, L. W., O’Doherty, S., Langenfelds, R. L., Krummel, P. B., Wang, H. J., Emmons, L., Tie, X. X., and Dlugokencky, E. J., 2002: In situmeasurements of atmospheric methane at GAGE/AGAGE sites during 1985 to 2000 and resulting source inferences, J. Geophys. Res. 107, doi: 10.1029/2001JD001226.Google Scholar
  16. Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D., Rowland, F., and Blake, D., 1996: Potential impact of iodine on tropospheric levels of ozone and other critical oxidants, J. Geophys. Res. 101D, 2135-2147.Google Scholar
  17. Dimmer, C. H., Simmonds, P. G., Nickless, G., and Bassford, M. R., 2000: Biogenic fluxes ofhalomethanes from Irish peatland ecosystems, Atmos. Environ. 35, 321-330.Google Scholar
  18. Draxler, R. D. and Hess, G. D., 1998: An overview of the HYSPLIT-4 modeling system for trajectories, dispersion, and deposition, Aust. Met. Mag. 47, 295-308.Google Scholar
  19. Fraser, P. J., Langenfelds, R., Derek, N., and Porter, L. W., 1991: Studies in air archiving techniques, Part 1: Long term stability of atmospheric trace gases in dry, natural air stored in high-pressure, surface treated aluminium cylinders, in S. R. Wilson and J. L. Gras (eds), Baseline Atmospheric Program (Australia) 1989, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, 16-29.Google Scholar
  20. Fraser, P. J., Steele, L. P., Derek, N., Porter, L. W., and Krummel, P. B., 2001: Halocarbons, nitrousoxide, methane, carbon monoxide and hydrogen - the AGAGE Program, 1993-1998, in N. W. Tindale, N. Derek, and R. J. Francey (eds), Baseline Atmospheric Program (Australia) 1997-1998, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, Australia, 90-97.Google Scholar
  21. Gregory, G. L., Westburg, D. J., Shipham, M. C., Blake, D. R., Newell, R. E., Fuelberg, H. E., Talbot, R. W., Heikes, B. G., Atlas, E. L., Sachse, G. W., Anderson, B. A., and Thornton, D. C., 1999: Chemical characteristics of Pacific tropospheric air in the region of the Intertropical Convergence Zone and South Pacific Convergence Zone, J. Geophys. Res. 104, 5677-5696.Google Scholar
  22. Groszko, W., 1999: An estimate of the global air-sea flux of methyl chloride, methyl bromide, and methyl iodide, PhD. Thesis, Dalhousie University, Halifax, Nova Scotia, Canada, p. 136.Google Scholar
  23. Hao, W. M., Liu, M., and Crutzen, P. J., 1990: Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980, in J. G. Goldammer (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, Springer-Verlag, New York, pp. 440-460.Google Scholar
  24. Happell, J. D. and Wallace, D. W. R., 1996: Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: Evidence for photochemical production, Geophys. Res. Lett. 23, 2105-2108.Google Scholar
  25. Heikes, B. G., Lee, M., Jacob, D. J., Talbot, R., Bradshaw, J. D., Singh, H. B., Blake, D. R., Anderson, B., Fulberg, H., Thompson, A. M., 1996: Ozone, hydroperoxides, oxides of nitrogen, and hydrocarbon budgets in the marine boundary layer over the South Atlantic, J. Geophys. Res. 101D, 24221-24234.Google Scholar
  26. Hurst, D. F., Griffith, D.W. T., and Cook, G. D., 1994: Trace gas emissions from biomass burning in tropical Australian savannas, J. Geophys. Res. 99D, 16441-16456.Google Scholar
  27. Jasper, J. D. and Downey, A. H., 1991: Towards a Cape Grim climatology, in S. R. Wilson and J. L. Gras (eds), Baseline Atmospheric Program (Australia) 1989, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, pp. 38-46.Google Scholar
  28. Kahl, J. D., 1993: A cautionary note on the use of air trajectories in interpreting atmospheric chemistry measurements, Atmos. Environ. 27A, 3037-3038.Google Scholar
  29. Langenfelds, R. L., Fraser, P. J., Francey, R. J., Steele, L. P., Porter, L. W., and Allison, C. E., 1996: The Cape Grim Air Archive: The first seventeen years, 1978-1995, in R. J. Francey, A. L. Dick, and N. Derek (eds), Baseline Atmospheric Program (Australia) 1994-95, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, pp. 53-70.Google Scholar
  30. Li, H.-J., Yokouchi, Y., and Akimoto, H., 1999: Measurement of methyl halides in the marine atmosphere, Atmos. Environ., 331881-1887.Google Scholar
  31. Lobert, J. M., Yvon-Lewis, S. A., Butler, J. H., Montzka, S. A., and Myers, R. C., 1997: Undersaturation of CH3Br in the Southern Ocean, Geophys. Res. Lett., 24, 171-172.Google Scholar
  32. Lovelock, J. E., 1975: Natural halocarbons in the air and in the sea. Nature, 256, 193-194.Google Scholar
  33. Lovelock, J. E., Maggs, R. J., and Wade, R. J., 1973: Halogenated hydrocarbons in and over the Atlantic, Nature, 241, 194-196.Google Scholar
  34. Madronich, S., 1987: Photodissociation in the Atmosphere: 1. Actinic Flux and the effects of ground reflections and clouds, J. Geophys. Res., 92D, 9740-9752.Google Scholar
  35. Manley, S. L. and Dastoor, M. N., 1987: Methyl halide CH3X production from the giant kelp, Macrocystis, and estimates of global CH3X production by kelp, Limnol. Oceanogr. 32, 709-715.Google Scholar
  36. Manley, S. L. and Dastoor, M. N., 1988: Methyl iodide CH3I production by kelp and associated microbes, Mar. Biol. 98, 477-482.Google Scholar
  37. Manley, S. L. and de la Cuesta, J. L., 1997: Methyl iodide production from marine phytoplankton cultures, Limnol. Oceanogr. 42: 142-147.Google Scholar
  38. McGregor, J. L., Walsh, K. J., and Katzfey, J. J., 1993: Nested modelling for regional climate studies, in A. K. Jakeman, M. B. Beck, and M. J. McAleer (eds), Modelling Change in Environmental Systems, John Wiley and Sons, Chichester, 367-386.Google Scholar
  39. McGregor, J. L., 1997: Regional climate modelling, Meteorol. Atmos. Phys. 63, 105-117.Google Scholar
  40. Miller, B. R., 1998: Abundances and trends of atmospheric chlorodifluoromethane and bromomethane, PhD Thesis, University of California, San Diego, California, U.S.A., p. 149.Google Scholar
  41. Miller, B. R., Huang, J., Weiss, R. F., Prinn, R. G., and Fraser, P. J., 1998: Atmospheric trend and lifetime of chlorodifluoromethane (HCFC 22) and the global tropospheric OH concentration, J. Geophys. Res. 103D, 13237-13248.Google Scholar
  42. Miyake, Y. and Tsunogai, S., 1963: Evaporation of iodine from the ocean, J. Geophys. Res. 68, 3989-3993.Google Scholar
  43. Monks, P. S., Carpenter, L. J., Penkett, S. A., Ayers, G. P., Gillett, R. W., Galbally, I. E., and Meyer, C. P., 1998: Fundamental ozone photochemistry in the remote boundary layer: The SOAPEX Experiment, measurement and theory, Atmos. Environ. 32, 3647-3664.Google Scholar
  44. Moore, R. M., Geen, C. E., and Tait, V. K., 1995: Determination of Henry’s Law constant for a suite of naturally occuring halogenated methanes in seawater, Chemosphere 30, 1183-1191.Google Scholar
  45. Moore, R. M., Webb, M., Tokarczyk, R., and Wever, R., 1996: Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures, J. Geophys. Res. 101C, 20899-20908.Google Scholar
  46. Moore, R. M. and Groszko, W., 1999: Methyl iodide distribution in the ocean and fluxes to the atmosphere, J. Geophys. Res. 104C, 11163-11171.Google Scholar
  47. Moore, R. M. and Zafiriou, O. C., 1994: Photochemical production of methyl iodide in seawater, J. Geophys. Res. 99D, 16415-16420.Google Scholar
  48. Muramatsu, Y. and Yoshida, S., 1995: Volatilization of methyl iodide from the soil-plant system, Atmos. Environ. 29, 21-25.Google Scholar
  49. Olson, J. R., Baum, B. A., Cahoon, D. R., and Crawford, J. H., 1999: Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A, J. Geophys. Res. 104D, 5865-5876.Google Scholar
  50. Oram, D. E. and Penkett, S. A., 1994: Observations in Eastern England of elevated methyl iodide concentrations in air of Atlantic origin, Atmos. Environ. 28, 1159-1174.Google Scholar
  51. Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., O'Doherty, S, Salameh, P., Miller B. R., Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P. M., and McCulloch, A., 2000: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res. 105, 17751-17792.Google Scholar
  52. Puri, K., Dietachmayer, G. S., Mills, G. A., Davidson, N. E., Bowen, R. A., Logan, L.W., 1998: The new BMRC Limited Area Prediction System, LAPS, Aust. Met. Mag. 47, 203-223.Google Scholar
  53. Rasmussen, R. A., Khalil, M. A. K., Gunawardena, R., and Hoyt, S. D., 1982a: Atmospheric methyl iodide, J. Geophys. Res. 87C, 3086-3090.Google Scholar
  54. Rasmussen, R. A., Khalil, M. A. K., Crawford, A. J., and Fraser, P. J., 1982b: Natural and anthropogenic trace gases in the Southern Hemisphere, Geophys. Res. Lett. 9, 704-707.Google Scholar
  55. Rattigan, O. V., Shallcross, D. E., and Cox, R. A., 1997: UV absorption cross-sections and atmospheric photolysis rates of CF3I, CH3I, C2H5I, CH2ICl, J. Chem. Soc., Faraday Trans. 93, 2839-2846.Google Scholar
  56. Reifenhauser, W. and Heumann, K., 1992: Determinations of methyl iodide in the Antarctic atmosphere and the South Polar Sea, Atmos. Environ. 26A, 2905-2912.Google Scholar
  57. Roehl, C. M., Burkholder, J. B., Moortgat, G. K., Ravishankara, A. R., and Crutzen, P. J., 1997: Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides, J. Geophys. Res. 102D: 12819-12829.Google Scholar
  58. Seaman, R., Bourke, W., Steinle, P., Hart, T., Embery, G., Naughton, M., and Rikus, L., 1995: Evolution of the Bureau of Meteorology’s Global Assimilation and Prediction System. Part 1: Analysis and initialisation. Aust. Met. Mag. 44, 1-18.Google Scholar
  59. Simmonds, P. G., O’Doherty, S. J., Nickless, G., Sturrock, G. A., Swaby, R. A., Knight, P., Ricketts, J., Woffendin, G., and Smith, R., 1995: Automated gas chromatography/mass spectrometer for routine atmospheric field measurements of the CFC replacement compounds, the hydrofluorocarbons and the hydrofluorochlorocarbons, Anal. Chem. 67, 717-723.Google Scholar
  60. Singh, H. B., Salas, L. J., and Stiles, R. E., 1983: Methyl halides in and over the eastern Pacific (40?N-32?S), J. Geophys. Res. 88, 3684-3690.Google Scholar
  61. Solomon, S., Garcia, R. R., and Ravishankara, A. R., 1994: On the role of iodine in ozone depletion, J. Geophys. Res. 99D, 20491-20499.Google Scholar
  62. Steele, L. P., Lucarelli, M. P., Fraser, P. J., Derek, N., and Porter, L. W., 1996: Halocarbons, nitrous oxide, methane, carbon monoxide and hydrogen - the AGAGE program 1993-1995, in A. L. Dick, R. J. Francey, and N. Derek (eds), Baseline Atmospheric Program (Australia) 1994-95, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, pp. 134-140.Google Scholar
  63. Sturges, W. T., McIntyre, H. P., Penkett, S. A., Chappellaz, J., Barnola, J.-M., Mulvaney, R., Atlas, E., and Stroud, V., 2001: Methyl bromide, other brominated methanes and methyl iodide in polar firn air, J. Geophys. Res. 106, 1595-1606.Google Scholar
  64. Sturrock, G. A., Porter, L. W., and Fraser, P. J., 2001: In situmeasurement of CFC replacement chemicals and halocarbons at Cape Grim: AGAGE GC-MS program, in N. W. Tindale, R. J. Francey, and N. Derek (eds), Baseline Atmospheric Program (Australia) 1997-98, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, Australia, pp. 43-49.Google Scholar
  65. Viney, C. and Walls, R., 1998: The kings of kelp, Aust. Geographic 51, 102-115.Google Scholar
  66. Vogt, R., 1999: Iodine compounds in the atmosphere, in P. Fabian and O. N. Singh (eds), The Handbook of Environmental Chemistry, Reactive Halogen Compounds in the Atmosphere, Springer-Verlag, Berlin, Heidelberg, pp. 113-128.Google Scholar
  67. Vogt, R., Sander, R., Von Glasow, R., and Crutzen, P., 1999: Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: A model study, J. Atmos. Chem. 32, 375-395.Google Scholar
  68. Walker, J., 1981: Fuel dynamics in Australian vegetation, in A. M. Gill, R. H. Groves, and I. R. Noble (eds), Fire and the Australian Biota, Aust. Acad. of Sci., Canberra, 101-128.Google Scholar
  69. Watling, R. and Harper, D. B., 1998: Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere, Mycol. Res. 102, 769-787.Google Scholar
  70. Wennberg, P. O., Brault, J. W., Hanisco, T. F., Salawitch, R. J., and Mount, G. H., 1997: The atmospheric column abundance of IO: Implications for stratospheric ozone, J. Geophys. Res. 102D, 8887-8898.Google Scholar
  71. Yokouchi, Y., Mukai, H., Yamamoto, H., Otsuki, A., Saitoh, C., and Nojiri, Y., 1997: Distribution of methyl iodide, ethyl iodide, bromoform, and dibromomethane over the ocean (east and southeast Asian seas and the western Pacific), J. Geophys. Res. 102D, 8805-8809.Google Scholar
  72. Yokouchi, Y., Nojiri, Y., Barrie, L. A., Toom-Sauntry, D., and Fujinuma, Y., 2001: Atmospheric methyl iodide: High correlation with surface seawater temperature and its implication on the sea-to-air flux, J. Geophys. Res. 106, 12661-12668.Google Scholar
  73. Zafiriou, O. C., 1974: Photochemistry of halogens in the marine atmosphere, J. Geophys. Res. 79, 2730-2732.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • D. S. Cohan
    • 1
  • G. A. Sturrock
    • 2
  • A. P. Biazar
    • 1
  • P. J. Fraser
    • 2
  1. 1.Cooperative Research Centre for Southern Hemisphere MeteorologyMonash UniversityClaytonAustralia
  2. 2.CSIRO Atmospheric ResearchAspendaleAustralia

Personalised recommendations