Journal of Algebraic Combinatorics

, Volume 4, Issue 2, pp 145–164 | Cite as

An Essay on the Ree Octagons

  • M. Joswig
  • H. Van Maldeghem
Article

Abstract

We coordinatize the Moufang generalized octagons arising from the Ree groups of type 2F4. In this way, we obtain a very concrete and explicit description of these octagons. We use this to prove some results on suboctagons, generalized homologies, Suzuki-Tits ovoids and groups of projectivities of the Ree octagons. All our results hold for arbitrary Ree octagons, finite or not.

Tits building generalized octagon group of projectivities coordinatization 

References

  1. 1.
    J. Dieudonné, La géeometric des groupes classiques, Springer, 3rd ed. (1971).Google Scholar
  2. 2.
    W. Feit and G. Higman, “The non-existence of certain generalized polygons,” J. Algebra 1 (1964), 114–131.Google Scholar
  3. 3.
    G. Hanssens and H. Van Maldeghem, “Coordinatization of generalized quadrangles,” Ann. Discr. Math. 37 (1988), 195–208.Google Scholar
  4. 4.
    G. Hanssens and H. Van Maldeghem, “Algebraic properties of quadratic quaternary rings,” Geom. Ded. 30 (1989), 43–67.Google Scholar
  5. 5.
    N. Knarr, “Projectivities of generalized polygons,” Ars Comb. 25B (1988), 265–275.Google Scholar
  6. 6.
    N. Knarr, “The nonexistence of certain topological polygons,” Forum Math. 2 (1990), 603–612.Google Scholar
  7. 7.
    S. Löwe, “Über die Konstruktion von verallgemeinerten Vierecken mit einem regulären Punkt,” Habilitationsschrift, Braunschweig (1992).Google Scholar
  8. 8.
    S.E Payne and J.R Thas, Finite generalized quadrangles, Pitman, 1984.Google Scholar
  9. 9.
    M. Ronan, Lectures on buildings, Academic Press, Persp. Math. 7, 1989.Google Scholar
  10. 10.
    J. Sarli, “The geometry of root subgroups in Ree groups of type 2 F 4Geom. Ded. 26 (1988), 1–28.Google Scholar
  11. 11.
    J.A Thas, “A restriction on the parameters of a suboctagon,” J. Combin. Th. A 27 (1979), 385–387.Google Scholar
  12. 12.
    J. Tits, “Sur la trialité et certains groupes qui s'en déduisent,” Publ. Math. IHES 2 (1959), 14–60.Google Scholar
  13. 13.
    J. Tits, “Les groupes simples de Suzuki et de Ree,” Sem. Bourbaki exp. 210 (1960).Google Scholar
  14. 14.
    J. Tits, “Ovoïdes et groupes de Suzuki,” Arch. Math. 13 (1962), 187–198.Google Scholar
  15. 15.
    J. Tits, “Buildings of spherical type and finite BN-pairs,” Springer, Lecture Notes Math. 386, 1974.Google Scholar
  16. 16.
    J. Tits, “Quadrangles de Moufang. I,” preprint (1976).Google Scholar
  17. 17.
    J. Tits, “Non-existence de certains polygones généralisée I/II,” Inv. Math. 36 (1976), 275–284; Inv. Math. 51 (1979), 267–269.Google Scholar
  18. 18.
    J. Tits, “Moufang octagons and the Ree groups of type 2 F 4,” Am. J. Math. 105 (1983), 539–594.Google Scholar
  19. 19.
    H. Van Maldeghem “Generalized polygons with valuation,” Arch. Math. 53 (1983), 513–520.Google Scholar
  20. 20.
    H. Van Maldeghem, “A configurational characterization of the Moufang generalized polygons,” European J. Combin. 11 (1990), 362–372.Google Scholar
  21. 21.
    H. Van Maldeghem, “Common characterizations of the finite Moufang polygons,” Proc. Third Isle of Thorn Conference on Finite Geometries and Designs, Adv. Finite Geom. and Designs (1991), 391–400.Google Scholar
  22. 22.
    H. Van Maldeghem, “The geometry of traces in Ree octagons,” to appear in the proceedings of Groups of Lie type and their geometries, Como, 1993. Google Scholar
  23. 23.
    H. Van Maldeghem and R. Weiss, “On finite Moufang polygons,” Israel J. Math. 79 (1992), 321–330.Google Scholar
  24. 24.
    R. Weiss, “The nonexistence of certain Moufang polygons,” Inv. Math. 51 (1979), 261–266.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • M. Joswig
    • 1
  • H. Van Maldeghem
    • 2
  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany
  2. 2.Department of Pure Mathematics and Computer AlgebraUniversity GhentGhentBelgium

Personalised recommendations