Journal of Algebraic Combinatorics

, Volume 4, Issue 2, pp 99–102 | Cite as

The Uniformly 3-Homogeneous Subsets of PGL(2, q)

  • Jürgen Bierbrauer


We use the character-table of PGL(2, q) to determine the subsets of that group acting uniformly 3-homogeneously on the projective line.

authentication secrecy permutation group character-table perpendicular array 


  1. 1.
    J. Bierbrauer and Tran van Trung, “Some highly symmetric authentication perpendicular arrays,” Designs, Codes and Cryptography 1 (1992), 307–319.Google Scholar
  2. 2.
    J. Bierbrauer, Tran van Trung, “Halving PGL(2, 2f), f odd: a series of cryptocodes,” Designs, Codes and Cryptography 1 (1991), 141–148.Google Scholar
  3. 3.
    Roger W. Carter, Finite groups of Lie type, Wiley, 1985.Google Scholar
  4. 4.
    L. Dornhoff, Group representation theory, Dekker, New York, 1971.Google Scholar
  5. 5.
    I. Martin Isaacs, Character theory of finite groups, Academic Press, 1976.Google Scholar
  6. 6.
    E.S. Kramer, D.L. Kreher, R. Rees, and D.R Stinson, “On perpendicular arrays with t≥ 3,” Ars Combinatoria 28 (1989), 215–223.Google Scholar
  7. 7.
    N. Steinberg, “The representations of GL(3, q), GL(4, q), PGL(3, q), and PGL(4, q),” Canadian Journal of Mathematics 3 (1951), 225–235.Google Scholar
  8. 8.
    D.R. Stinson, “The combinatorics of authentication and secrecy codes,” Journal of Cryptology 2 (1990), 23–49.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Jürgen Bierbrauer
    • 1
  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHoughton

Personalised recommendations