Journal of Algebraic Combinatorics

, Volume 4, Issue 3, pp 201–231 | Cite as

Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts

  • Christophe Carré
  • Bernard Leclerc


We propose a new combinatorial description of the product of two Schur functions. In the particular case of the square of a Schur function SI, it allows to discriminate in a very natural way between the symmetric and antisymmetric parts of the square. In other words, it describes at the same time the expansion on the basis of Schur functions of the plethysms S2(SI) and Λ2(SI). More generally our combinatorial interpretation of the multiplicities c IJ K = SISJ, SKleads to interesting q-analogues c IJ K (q) of these multiplicities. The combinatorial objects that we use are domino tableaux, namely tableaux made up of 1 × 2 rectangular boxes filled with integers weakly increasing along the rows and strictly increasing along the columns. Standard domino tableaux have already been considered by many authors [33], [6], [34], [8], [1], but, to the best of our knowledge, the expression of the Littlewood-Richardson coefficients in terms of Yamanouchi domino tableaux is new, as well as the bijection described in Section 7, and the notion of the diagonal class of a domino tableau, defined in Section 8. This construction leads to the definition of a new family of symmetric functions (H-functions), whose relevant properties are summarized in Section 9.

symmetric function domino tableaux plethysm Littlewood-Richardson rule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Barbasch and D. Vogan, “Primitive ideals and orbital integrals in complex classical groups,” Math. Ann. 259 (1982) 153–199.Google Scholar
  2. 2.
    A.D. Berenstein and A.V. Zelevinsky, “Triple multiplicities of sl(r+1) and the spectrum of the exterior algebra of the adjoint representation,” J. Alg. Combin. 1 (1992), 7–22.Google Scholar
  3. 3.
    C. Carré, “The rule of Littlewood-Richardson in a construction of Berenstein-Zelevinsky,” Int. J. of Algebra and Computation 1 (4) (1991), 473–491.Google Scholar
  4. 4.
    C. Carré, “Plethysm of elementary functions,” Bayreuther Mathematische Schriften 31 (1990), 1–18.Google Scholar
  5. 5.
    C. Carré, “Le pléthysme,” Thèse, Université Paris 7 (1991).Google Scholar
  6. 6.
    S. Fomin and D. Stanton, “Rim hook lattices,” Mittag-Leffler institute, preprint No. 23, 1991/92.Google Scholar
  7. 7.
    F. Grosshans, “The symbolic method and representation theory,” Advances in Math. 98 (1993), 113–142.Google Scholar
  8. 8.
    D. Garfinkle, “On the classification of primitive ideals for complex classical Lie algebras, I,” Compositio Mathematica 75 (1990) 2, 135–169.Google Scholar
  9. 9.
    F. Grosshans, G.C. Rota, and J. Stein, “Invariant theory and superalgebras,” Amer. Math. Soc. Providence, RI, 1987.Google Scholar
  10. 10.
    I.M. Gel'fand and A.V. Zelevinsky, “Polyhedra in the scheme space and the canonical basis for irreducible representations of gl 3,” Funct. Anal. Appl. 19 (1985), No. 2, 72–75.Google Scholar
  11. 11.
    I.M. Gel'fand and A.V. Zelevinsky, “Multiplicities and good bases for gl n,” Proc. III. Int. Semin. on Group-Theoretical Methods in Physics, Yurmala, 1985.Google Scholar
  12. 12.
    G.D. James and A. Kerber, The representation theory of the symmetric group, Addison-Wesley, 1981.Google Scholar
  13. 13.
    G.D. James and M.H. Peel, “Specht series for skew representations of symmetric groups,” J. Algebra 56 (1978), 343–364.Google Scholar
  14. 14.
    A.N. Kirillov, “On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers,” J. of Geometry and Physics 5 (3), (1988), 365–389.Google Scholar
  15. 15.
    A. Kerber, A. Kohnert, and A. Lascoux, “SYMMETRICA, an object oriented computer-algebra system for the symmetric group,” J. Symbolic Computation 14 (1992), 195–203.Google Scholar
  16. 16.
    A.N. Kirillov, A. Lascoux, B. Leclerc, and J.Y. Thibon, “Séries génératrices pour les tableaux de dominos,” C. R. Acad. Sci. Paris, t. 318, Série I, (1994), 395–400.Google Scholar
  17. 17.
    D. Knuth, “Permutations, matrices and generalized Young tableaux,” Pacific J. Math. 34 (1970), 709–727.Google Scholar
  18. 18.
    A.N. Kirillov and N.Yu. Reshetikhin, “Bethe ansatz and the combinatorics of Young tableaux,” Zap. Nauch. Semin. LOMI, 155 (1986), 65–115.Google Scholar
  19. 19.
    A. Lascoux, “Cyclic permutations on words, tableaux and harmonic polynomials,” Proc. of the Hyderabad conference on algebraic groups, 1989, Manoj Prakashan, Madras (1991), 323–347.Google Scholar
  20. 20.
    D.E. Littlewood, “Polynomial concomitants and invariant matrices,” Proc. London Math. Soc. (2) 43 (1937), 226.Google Scholar
  21. 21.
    D.E. Littlewood, “Invariant theory, tensors and group characters,” Phil. Trans. Roy. Soc. A 239 (1944), 305–65.Google Scholar
  22. 22.
    D.E. Littlewood, The theory of group characters and matrix representations of groups, Oxford, 1950 (second edition).Google Scholar
  23. 23.
    D.E. Littlewood, “Modular representations of symmetric groups,” Proc. Roy. Soc. A. 209 (1951), 333–353.Google Scholar
  24. 24.
    A. Lascoux, B. Leclerc, and J.Y. Thibon, “Une nouvelle expression des fonctions P de Schur,” C.R. Acad. Sci. Paris, t. 316, Série I, (1993), 221–224.Google Scholar
  25. 25.
    A. Lascoux, B. Leclerc, and J.Y. Thibon, “Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de 1'unité,” C.R. Acad. Sci. Paris, t. 316, Série I (1993), 1–6.Google Scholar
  26. 26.
    A. Lascoux and M.P. Schützenberger, Formulaire raisonné de fonctions symétriques, Publ. Math. Univ. Paris 7, 1985.Google Scholar
  27. 27.
    A. Lascoux and M.P. Schützenberger, “Le monoïde plaxique,” in Noncommutative structures in algebra and geometric combinatorics (A. de Luca Ed.), Quaderni della Ricerca Scientifica del C.N.R., Roma, 1981.Google Scholar
  28. 28.
    A. Lascoux and M.P. Schützenberger, “Schubert polynomials and the Littlewood-Richardson rule,” Letters in Math. Physics 10 (1985), 111–124.Google Scholar
  29. 29.
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford, 1979.Google Scholar
  30. 30.
    A.O. Morris and N. Sultana, “Hall-Littlewood polynomials at roots of 1 and modular representations of the symmetric group,” Math. Proc. Cambridge Phil. Soc. 110 (1991), 443–453.Google Scholar
  31. 31.
    G. de B. Robinson, “On the representation theory of the symmetric group,” Amer. J. Math. 60 (1938), 745–760.Google Scholar
  32. 32.
    G. de B. Robinson, Representation theory of the symmetric group, Edinburgh, 1961.Google Scholar
  33. 33.
    D. Stanton and D. White, “A Schensted algorithm for rim-hook tableaux,” J. Comb. Theory A 40 (1985), 211–247.Google Scholar
  34. 34.
    M. van Leeuwen, “A Robinson-Schensted algorithm in the geometry of flags for Classical Groups”, Thesis, 1989.Google Scholar
  35. 35.
    A.V. Zelevinsky, “A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence,” J. Algebra 69 (1981), 82–94.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Christophe Carré
    • 1
  • Bernard Leclerc
    • 2
  1. 1.LIR, Université de RouenMont-Saint-Aignan Cedex
  2. 2.L.I.T.P., Université Paris 7Paris Cedex 05

Personalised recommendations