Plasma Chemistry and Plasma Processing

, Volume 23, Issue 1, pp 1–46 | Cite as

Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications

  • Ulrich Kogelschatz
Article

Abstract

Dielectric-barrier discharges (silent discharges) are used on a large industrial scale. They combine the advantages of non-equilibrium plasma properties with the ease of atmospheric-pressure operation. A prominent feature is the simple scalability from small laboratory reactors to large industrial installations with megawatt input powers. Efficient and cost-effective all-solid-state power supplies are available. The preferred frequency range lies between 1 kHz and 10 MHz, the preferred pressure range between 10 kPa and 500 kPa. Industrial applications include ozone generation, pollution control, surface treatment, high power CO2 lasers, ultraviolet excimer lamps, excimer based mercury-free fluorescent lamps, and flat large-area plasma displays. Depending on the application and the operating conditions the discharge can have pronounced filamentary structure or fairly diffuse appearance. History, discharge physics, and plasma chemistry of dielectric-barrier discharges and their applications are discussed in detail.

Dielectric-barrier discharges silent discharges non-equilibrium plasmas ozone synthesis pollution control surface treatment CO2 lasers excimer lamps plasma displays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. Siemens, Poggendorff's Ann. Phys. Chem. 102, 66(1857).Google Scholar
  2. 2.
    T. Andrews and P. G. Tait, Phil. Trans. Roy. Soc. (London) 150, 113(1860).Google Scholar
  3. 3.
    P. Hautefeuille and J. Chappuis, Compt. Rend. Acad. Scé. (Paris) 92, 80(1881).Google Scholar
  4. 4.
    E. Warburg and G. Leithäuser, Ann. Physik (4) 28, 313(1909).Google Scholar
  5. 5.
    E. Warburg, Ann. Physik (4) 13, 464(1904).Google Scholar
  6. 6.
    E. Warburg, Z. Tech. Phys. 6, 625(1925).Google Scholar
  7. 7.
    H. Becker, Wiss. Veröff. Siemens-Konzern 1, 76(1920).Google Scholar
  8. 8.
    H. Becker, Wiss. Veröff. Siemens-Konzern 3, 243(1923).Google Scholar
  9. 9.
    M.-P. Otto, Bull. Soc. Franç. Electr. 9, 129(1929).Google Scholar
  10. 10.
    K. Buss, Arch. Elektrotech. 26, 261(1932).Google Scholar
  11. 11.
    A. Klemenc, H. Hinterberger, and H. Höfer, Z. Elektrochem. 43, 708(1937).Google Scholar
  12. 12.
    M. Suzuki, Proc. Jpn. Acad. 26, 20(1950).Google Scholar
  13. 13.
    M. Suzuki and Y. Naito, Proc. Jpn. Acad. 28, 469(1952).Google Scholar
  14. 14.
    K. Honda and Y. Naito, J. Phys. Soc. Jpn. 10, 1007(1955).Google Scholar
  15. 15.
    H. Gobrecht, O. Meinhardt, and F. Hein, Ber. Bunsenges. f. phys. Chem. 68, 55(1964).Google Scholar
  16. 16.
    M. A. Bagirov, M. A. Kurbanov, A. V. Shkilev, and N. E. Nuraliev, Sov. Phys.-Tech. Phys. 16, 1011(1971).Google Scholar
  17. 17.
    T. C. Manley, Trans. Electrochem. Soc. 84, 83(1943).Google Scholar
  18. 18.
    E. Briner and B. Susz, Helv. Chim. Acta. 13, 678(1930).Google Scholar
  19. 19.
    Yu. V. Filippov, V. A. Boblikova, and V. I. Panteleev, Electrosynthesis of Ozone, Moscow State University (1987) (in Russian).Google Scholar
  20. 20.
    J. C. Devins, J. Electrochem. Soc. 103, 460(1956).Google Scholar
  21. 21.
    R. W. Lunt, Adv. Chem. Ser. 21, 286(1959).Google Scholar
  22. 22.
    S. Fuji and N. Takemura, Adv. Chem. Series 21, 334(1959).Google Scholar
  23. 23.
    V. G. Samoilovich, V. Gibalov, and K. V. Kozlov, Physical Chemistry of the Barrier Discharge (J. P. F. Conrads and F. Leipold, eds.), DVS-Verlag, Düsseldorf (1997) (Original Russian version: Moscow State University, 1989).Google Scholar
  24. 24.
    U. Kogelschatz, in Proc. 16th Int. Conf. on Phenomena in Ionized Gases (XVI ICPIG), Düsseldorf (1983), Invited Papers, pp. 240–250.Google Scholar
  25. 25.
    B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 309(1991).Google Scholar
  26. 26.
    B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 1063(1991).Google Scholar
  27. 27.
    U. Kogelschatz, in Proc. 10th Int. Conf. on Gas Discharges and their Applications (GD-92), Swansea, UK (1992), Vol. II, pp. 972–982.Google Scholar
  28. 28.
    B. Eliasson, W. Egli, and U. Kogelschatz, Pure Appl. Chem. 66, 1275(1994).Google Scholar
  29. 29.
    U. Kogelschatz, B. Eliasson, and W. Egli, J. Phys. IV (France) 7, C4–47 (1997).Google Scholar
  30. 30.
    U. Kogelschatz, B. Eliasson, and W. Egli, Pure Appl. Chem. 71, 1819(1999).Google Scholar
  31. 31.
    U. Kogelschatz, Ozone generation and dust collection, in Electrical Discharges for Environmental Purposes: Fundamentals and Applications (E. M. van Veldhuizen, ed.), Nova Science Publishers, Commack, New York (2000), Chapter 12, pp. 315–344.Google Scholar
  32. 32.
    U. Kogelschatz and J. Salge, High pressure plasmas. Dielectric-barrier and corona discharges: Properties and technical applications, in Low Temperature Plasma Physics: Fundamental Aspects and Applications (R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds.), Wiley-VCH, Weinheim (2001), Chapter 13, pp. 331–357.Google Scholar
  33. 33.
    K. G. Donohoe and T. Wydeven, J. Appl. Polymer Sci. 23, 2591(1979).Google Scholar
  34. 34.
    S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 21, 838(1988).Google Scholar
  35. 35.
    F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, J. Appl. Phys. 83, 2950(1998).Google Scholar
  36. 36.
    D. G. Boyers and W. A. Tiller, Appl. Phys. Lett. 41, 28(1982).Google Scholar
  37. 37.
    E. Ammelt, D. Schweng, and H.-G. Purwins, Phys. Lett. A 179, 348(1993).Google Scholar
  38. 38.
    W. Breazeal, K. M. Flynn, and E. G. Gwinn, Phys. Rev. E 52, 1503(1995).Google Scholar
  39. 39.
    U. Kogelschatz, Filamentary, patterned and diffuse barrier discharges, IEEE Trans. Plasma Sci. 30 (2002), accepted for publication.Google Scholar
  40. 40.
    K. Yoshida and H. Tagashira, Memoirs Kitami Inst. Technol. 18, 11(1986).Google Scholar
  41. 41.
    B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D: Appl. Phys. 20, 1421(1987).Google Scholar
  42. 42.
    D. Braun, U. Küchler, and G. Pietsch, J. Phys. D: Appl. Phys. 24, 564(1991).Google Scholar
  43. 43.
    D. Braun, V. Gibalov, and G. Pietsch, Plasma Sources Sci. Technol. 1, 166(1992).Google Scholar
  44. 44.
    V. I. Gibalov and G. Pietsch, Russ. J. Phys. Chem. 68, 839(1994).Google Scholar
  45. 45.
    W. Egli, J. M. Favre, and B. Eliasson, Crosscuts 7 (3), 14(1998).Google Scholar
  46. 46.
    G. Steinle, D. Neundorf, W. Hiller, and M. Pietralla, J. Phys. D: Appl. Phys. 32, 1350(1999).Google Scholar
  47. 47.
    J. Drímal, V. I. Gibalov, and V. G. Samoilovich, Czech. J. Phys. B37, 1248(1987).Google Scholar
  48. 48.
    J. Drímal, K. V. Kozlov, V. I. Gibalov, and V. G. Samoilovich, Czech. J. Phys. B 38, 159(1988).Google Scholar
  49. 49.
    V. I. Gibalov, J. Drímal, M. Wronski, and V. G. Samoilovich, Contrib. Plasma Phys. 31, 89(1991).Google Scholar
  50. 50.
    E. Gerova and S. Müller, in Proc. 23rd Int. Conf. on Phenomena in Ionized Gases (XXIII ICPIG), Toulouse, France (1997), Vol. 4, pp. 120–121.Google Scholar
  51. 51.
    R. Wendt and H. Lange, J. Phys. D: Appl. Phys. 31, 3368(1998).Google Scholar
  52. 52.
    C. Hilbert, I. Gaurand, O. Motret, and J. M. Pouvesle, J. Appl. Phys. 85, 7070(1999).Google Scholar
  53. 53.
    C. Lukas, M. Spaan, V. Schulz-von der Gathen, M. Thomson, R. Wegst, H. F. Döbele, and M. Neiger, Plasma Sources Sci. Technol. 10, 445(2001).Google Scholar
  54. 54.
    K. V. Kozlov, H.-E. Wagner, R. Brandenburg, and P. Michel, J. Phys. D: Appl. Phys. 34, 3164(2001).Google Scholar
  55. 55.
    K. Kunze, M. Miclea, G. Musa, J. Franzke, C. Vadla, and K. Niemax, Spectrochimica Acta B57, 137(2002).Google Scholar
  56. 56.
    O. Motret, C. Hibert, S. Pellerin, and J. M. Pouvesle, J. Phys. D: Appl. Phys. 33, 1483(2000).Google Scholar
  57. 57.
    M. Spaan, J. Leistikow, V. Schulz-von der Gathen, and H. F. Döbele, Plasma Sources Sci. Technol. 9, 146(2000).Google Scholar
  58. 58.
    N. K. Bibinov, A. A. Fateev, and K. Wiesemann, Plasma Sources Sci. Technol. 10, 579(2001).Google Scholar
  59. 59.
    A. V. Phelps and S. A. Lawton, J. Chem. Phys. 69, 1055(1978).Google Scholar
  60. 60.
    N. P. Penkin, V. V. Smirnov, and O. D. Tsygir, Sov. Phys.: Techn. Phys. 27, 945(1982).Google Scholar
  61. 61.
    B. Eliasson, U. Kogelschatz, and P. Baessler, J. Phys. B: At. Mol. Phys. 17, L797(1984).Google Scholar
  62. 62.
    B. Eliasson and U. Kogelschatz, J. Phys. B: At. Mol. Phys. 19, 1241(1986).Google Scholar
  63. 63.
    S. Kajita, S. Ushirosa, and Y. Kodo, J. Appl. Phys. 67, 4015(1990).Google Scholar
  64. 64.
    P. C. Cosby, J. Chem. Phys. 98, 9560(1993).Google Scholar
  65. 65.
    A. V. Phelps and L. C. Pitchford, Phys. Rev. A 31, 2932(1985).Google Scholar
  66. 66.
    P. C. Cosby, J. Chem. Phys. 98, 9544(1993).Google Scholar
  67. 67.
    W. L. Nighan, Phys. Rev. A 2, 1989(1970).Google Scholar
  68. 68.
    A. N. Lobanov and A. N. Suchkov, Sov. J. Quant. Electron. 4, 843(1975).Google Scholar
  69. 69.
    H. N. Kücükarpaci and J. Lucas, J. Phys. D: Appl. Phys. 12, 2123(1979).Google Scholar
  70. 70.
    M. Braglia, R. Winkler, and J. Wilhelm, Contrib. Plasma Phys. 31, 463(1991).Google Scholar
  71. 71.
    B. Eliasson, F.-G. Simon, and W. Egli, Hydrogenation of CO2 in a silent discharge, in Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series, Vol. G 34, Part B (B. M. Penetrante and S. E. Schultheis, eds.), Springer, Berlin (1993), pp. 321–337.Google Scholar
  72. 72.
    A. C. Gentile, Kinetic Processes and Plasma Remediation of Toxic Gases, PhD Thesis, University of Illinois at Urbana-Champaign (1995), ftp://uigelz.ece.uiuc.edu/pub/theses/gentile-thesis.pdfGoogle Scholar
  73. 73.
    R. Dorai and M. J. Kushner, J. Appl. Phys. 88, 3739(2000).Google Scholar
  74. 74.
    X. Xu, Dynamics of high-and low-pressure plasma remediation, PhD Thesis, University of Illinois at Urbana-Champaign (2000), ftp://uigelz.ece.uiuc.edu/pub/theses/ xxu_thesis.pdfGoogle Scholar
  75. 75.
    I. Stefanović, N. K. Bibinov, A. A. Deryugin, I. P. Vionogradov, A. P. Napartovich, and K. Wiesemann, Plasma Sources Sci. Technol. 10, 406(2001).Google Scholar
  76. 76.
    X. P. Xu and M. J. Kushner, J. Appl. Phys. 84, 4153(1998).Google Scholar
  77. 77.
    R. C. Campbell, R. Veerasingam, and R. T. McGrath, IEEE Trans. Plasma Sci. 23, 698(1995).Google Scholar
  78. 78.
    J.-P. Boeuf and L. C. Pitchford, IEEE Trans. Plasma Sci. 24, 95(1996).Google Scholar
  79. 79.
    J.-P. Boeuf and H. Doyeaux, Europhys. News 27, 46(1996).Google Scholar
  80. 80.
    Y. Ikeda, J. P. Verboncoeur, P. J. Christenson, and C. K. Birdsall, J. Appl. Phys. 86, 2431(1999).Google Scholar
  81. 81.
    H. S. Jeong, B.-J. Shin, and K.-W. Whang, IEEE Trans. Plasma Sci. 27, 171(1999).Google Scholar
  82. 82.
    T. Tamida, S. J. Sanders, and M. Tanaka, Jpn. J. Appl. Phys. 39, 583(2000).Google Scholar
  83. 83.
    B. Eliasson and W. Egli, Helv. Phys. Acta 60, 241(1987).Google Scholar
  84. 84.
    J. J. Coogan and A. D. Sappey, IEEE Trans. Plasma Sci. 24, 91(1996).Google Scholar
  85. 85.
    U. Kogelschatz, Advanced ozone generation, in Process Technologies for Water Treatment (S. Stucki, ed.), Plenum Press, New York, NY (1988), pp. 87–120.Google Scholar
  86. 86.
    Z. Falkenstein and J. J. Coogan, J. Phys. D: Appl. Phys. 30, 817(1997).Google Scholar
  87. 87.
    T. Tamida, A. Iwata, J. Nishimae, and M. Tanaka, in Proc. 12th Int. Conf. on Gas Discharges and Their Appl. (GD 97), Greifswald (1997), Vol. II, pp. 641–644.Google Scholar
  88. 88.
    C. F. Schönbein, Poggendorff's Ann. Phys. Chem. 50, 616(1840).Google Scholar
  89. 89.
    U. Kogelschatz, B. Eliasson, and M. Hirth, Ozone Sci. Eng. 10, 367(1988).Google Scholar
  90. 90.
    R. Peyrous, P. Pignolet, and B. Held, J. Phys. D: Appl. Phys. 22, 1658(1989).Google Scholar
  91. 91.
    G. Pietsch and V. I. Gibalov, Pure Appl. Chem. 70, 1169(1998).Google Scholar
  92. 92.
    J. Kitayama and M. Kuzumoto, J. Phys. D: Appl. Phys. 30, 2453(1997).Google Scholar
  93. 93.
    S. Yagi and M. Tanaka, J. Phys. D: Appl. Phys. 12, 1509(1979).Google Scholar
  94. 94.
    V. G. Samoilovich and V. I. Gibalov, Russ. J. Phys. Chem. 60, 1107(1986).Google Scholar
  95. 95.
    D. Braun, U. Küchler, and G. Pietsch, Pure Appl. Chem. 60, 741(1988).Google Scholar
  96. 96.
    I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207(1992).Google Scholar
  97. 97.
    J. Kitayama and M. Kuzumoto, J. Phys. D: Appl. Phys. 32, 3032(1999).Google Scholar
  98. 98.
    J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453(1999).Google Scholar
  99. 99.
    B. Eliasson and U. Kogelschatz, J. Chim. Phys. 83, 279(1986).Google Scholar
  100. 100.
    R. Peyrous, Ozone Sci. Eng. 12, 19(1990).Google Scholar
  101. 101.
    B. Eliasson and U. Kogelschatz, in Proc. 8th Int. Symp. on Plasma Chemistry (ISP-8), Tokyo (1987), pp. 736–741.Google Scholar
  102. 102.
    U. Kogelschatz and P. Baessler, Ozone Sci. Eng. 9, 195(1987).Google Scholar
  103. 103.
    V. I. Gibalov, V. G. Samoilovich, and M. Wronski, in Proc. 7th Int. Symp. on Plasma Chemistry (ISP-7), Eindhoven (1985), pp. 401–406.Google Scholar
  104. 104.
    P. J. Crutzen, Quart. J. R. Met. Soc. 96, 320(1970).Google Scholar
  105. 105.
    H. S. Johnston, Ann. Rev. Phys. Chem. 43, 1(1992).Google Scholar
  106. 106.
    J. F. Schultz and O. R. Wulf, J. Am. Chem. Soc. 62, 2980(1940).Google Scholar
  107. 107.
    U. Kogelschatz and B. Eliasson, Ozone Generation and Applications, in Handbook of Electrostatic Processes (J. S. Chang, A. J. Kelly, and J. M. Crowley, eds.), Marcel Dekker, New York (1995), Chapter 26, pp. 581–605.Google Scholar
  108. 108.
    U. Kogelschatz, in Proc. Int. Ozone Symp., Basle (1999), pp. 253–265.Google Scholar
  109. 109.
    A. Starke, Z. Elektrochem. 29, 358(1923).Google Scholar
  110. 110.
    M. Kuzumoto, Y. Tabata, and S. Yagi, Trans. IEE of Japan 116A, 121(1996) (in Japanese).Google Scholar
  111. 111.
    S. Masuda, K. Akutsu, M. Kuroda, Y. Awatsu, and Y. Shibuya, IEEE Trans. Ind. Appl. 24, 223(1988).Google Scholar
  112. 112.
    J. A. Wojtowicz, Ozone, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc. (1996), Fourth Edition, Vol. 17, pp. 953–994.Google Scholar
  113. 113.
    J. Hoigné, Cemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation process, in Handbook of Environmental Chemistry, (J. Hrubec, ed.), Vol. 5, Part C, Springer, Berlin (1998), pp. 83–141.Google Scholar
  114. 114.
    W. E. Cromwell and T. C. Manley, Adv. Chem. Ser. 21, 304(1959).Google Scholar
  115. 115.
    E. Inoue and K. Sugino, Adv. Chem. Ser. 21, 313(1959).Google Scholar
  116. 116.
    B. M. Penetrante and S. E. Schultheis (eds.), Non-Thermal Plasma Techniques for Pollution Control, Part A: Overview, Fundamentals and Supporting Technologies, Part B: Electron Beam and Electrical Discharge Processing, NATO ASI Series, Series G: Ecological Sciences, Vol. 34, Springer, Berlin (1993).Google Scholar
  117. 117.
    L. A. Rosocha, G. A. Anderson, L. A. Bechtold, J. J. Coogan, H. G. Heck, M. Kang, W. H. McCulla, R. A. Tennant, and J. P. Wantuck, Treatment of hazardous organic wastes using silent discharge plasmas, in Non-Thermal Plasma Techniques for Pollution Control (B. M. Penetrante and S. E. Schultheis, eds.), NATO ASI Series, Vol. G 34, Part B, Springer, Berlin (1993), pp. 281–308.Google Scholar
  118. 118.
    U. Kogelschatz, in Proc. 8th Int. Conf. on Switching Arc Phenomena/Int. Symp. on Electrical Technologies for Environmental Protection (SAP&ETEP'97), Lodz (1997), pp. 299–303.Google Scholar
  119. 119.
    L. A. Rosocha, Processing of hazardous chemicals using silent-discharge plasmas, in Plasma Science and the Environment (W. Manheimer, L. E. Sugiyama, and T. H. Stix, eds.), AIP Press, Woodbury, NY (1997), Chap. 11, pp. 261–298.Google Scholar
  120. 120.
    B. M. Penetrante, J. N. Bardsley, and M. C. Hsiao, Jpn. J. Appl. Phys. 36, 7B, 5007 (1997).Google Scholar
  121. 121.
    L. A. Rosocha, J. Adv. Oxid. Technol. 4, 247(1999).Google Scholar
  122. 122.
    B. M. Penetrante, R. M. Brusasco, B. T. Merrit, and G. E. Vogtlin, Pure Appl. Chem. 71, 1829(1999).Google Scholar
  123. 123.
    E. M. van Veldhuizen (ed.), Electrical Discharges for Environmental Purposes: Fundamentals and Applications, Nova Science Publ., Huntington NY (2000).Google Scholar
  124. 124.
    V. A. Bityurin, M. A. Deminsky, and B. V. Potapkin, Chemical activity of discharges, in Electrical Discharges for Environmental Purposes: Fundamentals and Applications, E.M. van Veldhuizen, ed., Nova Science Publ., Huntington, NY (2000), Chapter 4, pp. 49–117.Google Scholar
  125. 125.
    L. A. Rosocha and R. A. Korzekwa, Removal of volatile organic compounds (VOCs) by atmospheric-pressure dielectric-barrier and pulsed-corona electrical discharges, in Electrical Discharges for Environmental Purposes: Fundamentals and Applications (E. M. van Veldhuizen, ed.), Nova Science Publ., Huntington, NY (2000), Chapter 10, pp. 245–278.Google Scholar
  126. 126.
    M. Berthelot, Compt. Rend. Acad. Scé. (Paris) 82, 1360(1876).Google Scholar
  127. 127.
    R. Schwarz and W. Kunzer, Z. Anorg. Allgem. Chem. 183, 287(1929).Google Scholar
  128. 128.
    I. Traus and H. Suhr, Plasma Chem. Plasma Process. 12, 275(1992).Google Scholar
  129. 129.
    E. J. Clothiaux, J. A. Koropchak, and R. R. Moore, Plasma Chem. Plasma Process. 4, 15(1984).Google Scholar
  130. 130.
    M. E. Fraser and R. Sheinson, Plasma Chem. Plasma Process. 6, 27(1986).Google Scholar
  131. 131.
    I. Sardja and S. K. Dhali, Appl. Phys. Lett. 56, 21(1989).Google Scholar
  132. 132.
    S. K. Dhali and I. Sardja, J. Appl. Phys. 69, 6319(1991).Google Scholar
  133. 133.
    M. B. Chang, M. J. Kushner, and M. J. Rood, Plasma Chem. Plasma Process. 12, 565(1992).Google Scholar
  134. 134.
    W. Sun, B. Pashai, S. K. Dhali, and F. I. Honea, J. Appl. Phys. 79, 3438(1996).Google Scholar
  135. 135.
    R. H. Zhang, T. Yamamoto, and D. S. Bundy, IEEE Trans. Ind. Appl. 32, 113(1996).Google Scholar
  136. 136.
    M. B. Chang and T. D. Tseng, J. Environ. Eng. 122, 41(1996).Google Scholar
  137. 137.
    R. Ruan, W. Han, A. Ning, P. L. Chen, P. R. Goodrich, and R. Zhang, J. Adv. Oxid. Technol. 4, 328(1999).Google Scholar
  138. 138.
    H. Ma, P. Chen, and R. Ruan, Plasma Chem. Plasma Process. 21, 611(2001).Google Scholar
  139. 139.
    J. Comes, Angew. Chem. 106, 1900(1994).Google Scholar
  140. 140.
    A. Ogata, K. Mizuno, S. Kushiyama, and T. Yamamoto, Plasma Chem. Plasma Process. 18, 363(1998).Google Scholar
  141. 141.
    S. Futamura, A. Zhang, G. Prieto, and T. Yamamoto, IEEE Trans. Ind. Appl. 34, 967(1998).Google Scholar
  142. 142.
    M. C. Hsiao, B. T. Merrit, B. M. Penetrante, G. E. Vogtlin, P. H. Wallman, R. G. Tonkyn, R. R. Shah, and T. M. Orlando, J. Adv. Oxid. Technol. 1, 79(1996).Google Scholar
  143. 143.
    A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Plasma Chem. Plasma Process. 19, 383(1999).Google Scholar
  144. 144.
    A. Ogata, N. Shintani, K. Mizuno, S. Kushiyama, and T. Yamamoto, IEEE Trans. Ind. Appl. 35, 753(1999).Google Scholar
  145. 145.
    W. C. Neely, E. I. Newhouse, E. J. Clothiaux, and C. A. Gross, Decomposition of complex molecules using silent discharge processing, in Non-Thermal Plasma Techniques for Pollution Control (B. M. Penetrante and S. E. Schultheis, eds.), NATO ASI Series, Vol. G 34, Part B, Springer, Berlin (1993), pp. 309–320.Google Scholar
  146. 146.
    A. Sjöberg, T. H. Teich, E. Heinzle, and K. Hungerbühler, J. Adv. Oxid. Technol. 4, 319(1999).Google Scholar
  147. 147.
    T. Yamamoto, J.-S. Chang, A. A. Berezin, H. Kohno, S. Honda, and A. Shibuya, J. Adv. Oxid. Technol. 1, 67(1996).Google Scholar
  148. 148.
    G. K. Anderson, H. Snyder, and J. Coogan, Plasma Chem. Plasma. Process. 19, 131(1999).Google Scholar
  149. 149.
    S. P. Bugaev, V. A. Kushinov, N. S. Sochugov, and P. A. Khryapov, Plasma Chem. Plasma Process. 16, 669(1996).Google Scholar
  150. 150.
    D. G. Storch and M. J. Kushner, J. Appl. Phys. 73, 51(1993).Google Scholar
  151. 151.
    H. M. Lee and M. B. Chang, Plasma Chem. Plasma Process. 21, 329(2001).Google Scholar
  152. 152.
    M. C. Hsiao, B. T. Merrit, B. M. Penetrante, and G. E. Vogtlin, J. Appl. Phys. 78, 3451(1995).Google Scholar
  153. 153.
    Z. Falkenstein, J. Adv. Oxid. Technol. 2, 223(1997).Google Scholar
  154. 154.
    R. G. Tonkyn, S. E. Barlow, and T. M. Orlando, J. Appl. Phys. 80, 4877(1996).Google Scholar
  155. 155.
    T. Yamamoto, K. Mizuno, I. Tamori, A. Ogata, M. Nifuku, M. Michalska, and G. Prieto, IEEE Trans. Ind. Appl. 32, 100(1996).Google Scholar
  156. 156.
    C. Fitzsimmons, F. Ismail, J. C. Whitehead, and J. J. Wilman, J. Phys. Chem. A104, 6032(2000).Google Scholar
  157. 157.
    D. Evans, L. A. Rosocha, G. K. Anderson, J. J. Cogan, and M. J. Kushner, J. Appl. Phys. 74, 5378(1993).Google Scholar
  158. 158.
    T. Oda, R. Yamashita, T. Takahashi, and S. Masuda, IEEE Trans. Ind. Appl. 32, 227(1966).Google Scholar
  159. 159.
    S. Futamura and T. Yamamoto, IEEE Trans. Ind. Appl. 33, 447(1997).Google Scholar
  160. 160.
    A. C. Gentile and M. J. Kushner, J. Appl. Phys. 78, 2977(1995).Google Scholar
  161. 161.
    H. Snyder and G. K. Anderson, IEEE Trans. Plasma Sci. 26, 1695(1998).Google Scholar
  162. 162.
    S. J. Yu and M. B. Chang, Plasma Chem. Plasma Process. 21, 311(2001).Google Scholar
  163. 163.
    R. N. Foster and J. B. Butt, Enhancing reaction rates, US Patent No. 3,674,666 (1972).Google Scholar
  164. 164.
    J.-S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152(1991).Google Scholar
  165. 165.
    C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Mammel, and P. H. Kariher, Air & Waste 43, 242(1993).Google Scholar
  166. 166.
    T. Yamamoto, P. A. Lawless, M. K. Owen, D. S. Ensor, and C. Boss, Control of volatile organic compounds by a pulsed corona reactor and a packed bed reactor, in Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series, Vol. G 34, Part B (B. M. Penetrante and S. E. Schultheis, eds.), Springer, Berlin (1993), pp. 223–237.Google Scholar
  167. 167.
    M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun, Phys. Chem. Chem. Phys. 3, 294(2001).Google Scholar
  168. 168.
    M. Higashi, S. Uchida, N. Suzuki, and K. Fujii, IEEE Trans. Plasma Sci. 20, 1(1992).Google Scholar
  169. 169.
    M. Klein, and R. Seeböck, Phys. Blätter 52, 886(1996) (in German).Google Scholar
  170. 170.
    B. M. Penetrante, R. M. Brusasco, B. T. Merrit, and G. E. Vogtlin, Pure Appl. Chem. 71, 1829(1999).Google Scholar
  171. 171.
    B. M. Penetrante, M. C. Hsiao, B. T. Merrit, G. E. Vogtlin, P. H. Wallman, M. Neiger, O. Wolf, T. Hammer, and S. Bröer, Appl. Phys. 68, 3719(1996).Google Scholar
  172. 172.
    W. O. Niessen, O. Wolf, R. Schruft, and M. Neiger, J. Phys. D: Appl. Phys. 31, 542(1998).Google Scholar
  173. 173.
    T. Hammer, in Proc. 7th Int. Symp. on High Pressure Low Temperature Plasma Chemistry (HAKONE VII), Greifswald (2000), Vol. 2, 234–241.Google Scholar
  174. 174.
    J. W. Hoard, T. J. Wallington, J. C. Ball, M. D. Hurley, K. Wodzisz, and M. L. Balmer, Environ. Sci. Technol. 33, 3427(1999).Google Scholar
  175. 175.
    T. Hammer, S. Bröer, and T. Kishimoto, J. Adv. Oxid. Technol. 4, 368(1999).Google Scholar
  176. 176.
    A. C. Gentile and M. J. Kushner, J. Appl. Phys. 78, 2074(1995).Google Scholar
  177. 177.
    J. J. Lowke and R. Morrow, IEEE Trans. Plasma Sci. 23, 661(1995).Google Scholar
  178. 178.
    O. Eichwald, M. Yousfi, A. Hennad, and M. D. Bennabdessadok, J. Appl. Phys. 82, 4781(1997).Google Scholar
  179. 179.
    Y. S. Mok, S. W. Ham, and I.-S. Nam, IEEE Trans. Plasma Sci. 26, 1566(1998).Google Scholar
  180. 180.
    R. Dorai and M. J. Kushner, J. Phys. D: Appl. Phys. 34, 574(2001).Google Scholar
  181. 181.
    L. W. Sieck, J. T. Herron, and D. S. Green, Plasma Chem. Plasma Process. 20, 235(2000).Google Scholar
  182. 182.
    J. T. Herron and D. S. Green, Plasma Chem. Plasma Process. 21, 459(2001).Google Scholar
  183. 183.
    J. T. Herron, Plasma Chem. Plasma Process. 21, 581(2001).Google Scholar
  184. 184.
    R. Dorai and M. J. Kushner, J. Appl. Phys. 88, 3739(2000).Google Scholar
  185. 185.
    I. Orlandini and U. Riedel, J. Phys. D: Appl. Phys. 33, 2467(2000).Google Scholar
  186. 186.
    R. Dorai, K. Hassouni, and M. J. Kushner, J. Appl. Phys. 88, 6060(2000).Google Scholar
  187. 187.
    M. Klein, Barrierenentladungen zur Entstickung motorischer Abgase, PhD Thesis, Universität Karlsruhe (1995) (in German).Google Scholar
  188. 188.
    S. Bröer, Plasmainduzierte Entstickung dieselmotorischer Abgase-Der Einfluss gasförmiger Additive sowie die Kombination mit katalytischen und reaktiven Materialien, PhD Thesis, Technische Universität München (1997) (in German).Google Scholar
  189. 189.
    R. Dorai, Modeling of plasma remediation of NO x using global kinetic models accounting for hydrocarbons, MS Thesis, University of Illinois at Urbana-Champlaign, 2000, ftp://uigelz.ece.uiuc,.edu/pub/theses/rajesh_ms_thesis.pdf.Google Scholar
  190. 190.
    S. Müller, J. Conrads, and W. Best, in Proc. 7th Int. Symp. on High Pressure Low Temp. Plasma Chem. (HAKONE VII), Greifswald (2000), Vol. 2, pp. 340–344.Google Scholar
  191. 191.
    R. V. de Saint-Auney, Chimie et Industrie 29, 1011(1933).Google Scholar
  192. 192.
    Yu. N. Zhitnev and Yu. V. Filippov, Moscow University Chemistry Bull. 22, 5(1967).Google Scholar
  193. 193.
    J. Rutkowsky, H. Drost, and R. Mach, Beitr. Plasmaphys. 23, 181(1983).Google Scholar
  194. 194.
    D. I. Slovetsky, Pure Appl. Chem. 60, 753(1988).Google Scholar
  195. 195.
    B. Eliasson, CO2 Chemistry: An Option for CO2 Emission Control? in Carbon Dioxide Chemistry: Environmental Issues (J. Paul and C.-M. Pradier, eds.), The Royal Soc. Chem., Cambridge (1994), pp. 5–15.Google Scholar
  196. 196.
    S. S. Shepelev, H. D. Gesser, and N. R. Hunter, Plasma Chem. Plasma Process. 13, 479(1993).Google Scholar
  197. 197.
    K. Okazaki, in Proc. Int. Symp. on CO 2 Fixation and Efficient Utilization of Energy, Tokyo, Japan (1993), pp. 37–42.Google Scholar
  198. 198.
    R. Bhatnagar and R. G. Mallinson, Methane conversion in an ac electric discharges at ambient conditions, in Methane and Alkane Conversion Chemistry (M. M. Bhasin and D. W. Slocum, eds.), Plenum Press, New York (1995), pp. 249–264.Google Scholar
  199. 199.
    O. Motret, S. Pellerin, M. Nikravech, V. Massereau, and J.-M. Pouvesle, Plasma Chem. Plasma Process. 17, 393(1997).Google Scholar
  200. 200.
    L.-M. Zhou, B. Xue, U. Kogelschatz, and B. Eliasson, Plasma Chem. Plasma Process. 18, 375(1998).Google Scholar
  201. 201.
    L. M. Zhou, B. Xue, U. Kogelschatz, and B. Eliasson, Energy and Fuels 12, 1191(1998).Google Scholar
  202. 202.
    K. V. Kozlov, P. Michel, and H.-E. Wagner, in Proc. 7th Int. Symp. on High Pressure Low Temp. Plasma Chem. (HAKONE VII), Greifswald (2000), Vol. 2, pp. 262–266.Google Scholar
  203. 203.
    B. Eliasson, U. Kogelschatz, B. Xue, and L.-M. Zhou, Ind. Eng. Chem. Res. 37, 3350(1998).Google Scholar
  204. 204.
    B. Eliasson, C. Liu, and U. Kogelschatz, Ind. Eng. Chem. Res. 39, 1221(2000).Google Scholar
  205. 205.
    K. Zhang, B. Eliasson, and U. Kogelschatz, Energy and Fuels 15, 395(2001).Google Scholar
  206. 206.
    U. Kogelschatz, L.-M. Zhou, B. Xue, and B. Eliasson, Production of synthesis gas through plasma-assisted reforming of greenhouse gases, in Greenhouse Gas Control Technologies (B. Eliasson, P. F. W. Riemer, and A. Wokaun, eds.), Pergamon, Amsterdam (1999), pp. 385–390.Google Scholar
  207. 207.
    M. Kraus, W. Egli, K. Haffner, B. Eliasson, U. Kogelschatz, and A. Wokaum, Phys. Chem. Chem. Phys. 4, 668(2002).Google Scholar
  208. 208.
    D. A. Markgraf, Corona Treatment: An Overview, http://www.enerconind.com/treating/papers/overview/overview.pdf, (2001).Google Scholar
  209. 209.
    J. L. Linsley Hood, in Proc. 6th Int. Conf. on Gas Discharges and Their Applications (GD-80), Edinburgh (1980), pp. 86–90.Google Scholar
  210. 210.
    T. Uehara, Corona discharge treatment of polymers, in Adhesion Promotion Techniques: Technological Application (K. L. Mittal and A. Pizzi, eds.), Marcel Dekker, New York, Basel (1999), Chapter 7, pp. 139–174.Google Scholar
  211. 211.
    K. Pochner, W. Neff, and R. Leber, Surf. Coat. Technol. 74/75, 394(1995).Google Scholar
  212. 212.
    S. Meiners, J. G. H. Salge, E. Prinz, and F. Förster, Surf. Coat. Technol. 98, 1121(1998).Google Scholar
  213. 213.
    M. Hudis, Plasma Treatment of Solid Materials, in Techniques and Applications of Plasma Chemistry (J. R. Hollahan and A. T. Bell, eds.), John Wiley & Sons, New York (1974), Chapter 3, pp. 113–147.Google Scholar
  214. 214.
    D. Briggs, Applications of XPS in Polymer Technology, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (D. Briggs and M. P. Seah, eds.), John Wiley & Sons, Chichester (1983), Chapter 9, pp. 359–396.Google Scholar
  215. 215.
    X. J. Dai and L. Kviz, Study of atmospheric and low pressure plasma modification on the surface properties of synthetic and natural fibres, Textile Institute 81st World Conf., Melbourne, Australia, April 2001 (www.tft.csiro.au).Google Scholar
  216. 216.
    F. D. Egitto and L. J. Matienzo, IBM J. Res. Dev. 38, 423(1994).Google Scholar
  217. 217.
    C. M. Chan, T. M. Ko, and H. Hiraoka, Surf. Sci. Rep. 24, 1(1996).Google Scholar
  218. 218.
    M. R. Wertheimer, L. Martinu, and J. E. Klemberg-Sapieha, Plasma Treatment of polymers to improve adhesion, in Adhesion Promotion Techniques: Technological Application (K. L. Mittal and A. Pizzi, eds.), Marcel Dekker, New York, Basel (1999), Chapter 5, pp. 191–204.Google Scholar
  219. 219.
    O. D. Greenwood, R. D. Boyd, J. Hopkins, and J. P. S. Badyal, J. Adhesion Sci. Technol. 9, 311(1995).Google Scholar
  220. 220.
    J. Salge, J. de Physique IV 5, C5–583 (1995).Google Scholar
  221. 221.
    R. Thyen, A. Weber, and C.-P. Klages, Surf. Coat. Technol. 97, 426(1997).Google Scholar
  222. 222.
    F. Denes, Z. Q. Hua, W. J. Simonsick, and D. J. Aaserud, J. Appl. Polymer Sci. 71, 1627(1999).Google Scholar
  223. 223.
    P. Cocolios, F. Coeuret, J.-L. Gelot, A. Villermet, E. Prinz, and F. Förster, Coating 32, 314(1999).Google Scholar
  224. 224.
    S. P. Bugaev, A. D. Korotaev, K. V. Oskomov, and N. S. Sochugov, Surf. Coat. Technol. 96, 123(1997).Google Scholar
  225. 225.
    D. Liu, S. Yu, T. Ma, Z. Song, and X. Yang, Jpn. J. Appl. Phys. 39, 3359(2000).Google Scholar
  226. 226.
    Z. Falkenstein and J. J. Coogan, J. Appl. Phys. 82, 6273(1997).Google Scholar
  227. 227.
    F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, and P. Ségur, in Proc. 10th Int. Conf. on Gas Discharges and Their Applications (GD-92), Swansea (1992), pp. 730–733.Google Scholar
  228. 228.
    J. R. Roth, M. Laroussi, and C. Liu, in Proc. 27th IEEE ICOPS, Tampa (1992), Paper #P21.Google Scholar
  229. 229.
    P. P. Tsai, L. C. Wadsworth, and J. R. Roth, Textile Res. J. 67, 359(1997).Google Scholar
  230. 230.
    N. Gherardi, S. Martin, and F. Massines, J. Phys. D: Appl. Phys. 33, L104(2000).Google Scholar
  231. 231.
    M. Kogoma and S. Okazaki, J. Phys. D: Appl. Phys. 27, 1985(1994).Google Scholar
  232. 232.
    T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 23, 1125(1990).Google Scholar
  233. 233.
    S. Okazaki, S. M. Kogoma, M. Uehara, and Y. Kimura, J. Phys. D: Appl. Phys. 26, 889(1993).Google Scholar
  234. 234.
    M. Kogoma, S. Okazaki, N. Kanda, H. Uchiyama, and H. Jinno, in Proc. Jpn. Symp. Plasma Chem. 4 (1991), pp. 345–350.Google Scholar
  235. 235.
    F. Massines and G. Gouda, J. Phys. D: Appl. Phys. 31, 3411(1998).Google Scholar
  236. 236.
    F. Massines, R. Messaoudi, and C. Mayoux, Plasmas and Polymers 3, 43(1998).Google Scholar
  237. 237.
    M. Laroussi, IEEE Trans. Plasma Sci. 24, 1188(1996).Google Scholar
  238. 238.
    T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, IEEE Trans. Plasma Sci. 28, 41(2000).Google Scholar
  239. 239.
    M. Laroussi, I. Alexeff, and W. L. Kang, IEEE Trans. Plasma Sci. 28, 184(2000).CrossRefGoogle Scholar
  240. 240.
    M. Laroussi, G. S. Sayler, B. B. Glascock, B. McCurdy, M. R. Pearce, N. G. Bright, and C. M. Malott, IEEE Trans. Plasma Sci. 27, 34(1999).Google Scholar
  241. 241.
    S. Yagi, M. Hishii, N. Tabata, H. Nagai, and A. Nagai, Laser Eng. 5, 171(1977) (in Japanese).Google Scholar
  242. 242.
    M. Tanaka, S. Yagi, and N. Tabata, in Proc. 8th Int. Conf. on Gas Discharges and Their Applications (GD-85), Oxford (1985), pp. 551–554.Google Scholar
  243. 243.
    K. Yasui, M. Kuzumoto, S. Ogawa, M. Tanaka, and S. Yagi, IEEE J. Quantum Electron. 25, 836(1989).Google Scholar
  244. 244.
    S. Yagi and M. Kuzumoto, Australian J. Phys. 48, 411(1995).Google Scholar
  245. 245.
    M. Kuzumoto, S. Ogawa, and S. Yagi, J. Phys. D: Appl. Phys. 22, 1835(1989).Google Scholar
  246. 246.
    S. Wienecke, S. Born, and W. Viöl, J. Phys. D: Appl. Phys. 33, 1282(2000).Google Scholar
  247. 247.
    B. Gellert and U. Kogelschatz, Appl. Phys. B52, 14(1991).Google Scholar
  248. 248.
    Y. Tanaka, J. Opt. Soc. Am. 45, 710(1955).Google Scholar
  249. 249.
    E. N. Pavlovskaya and A. V. Yakovleva, Opt. Spectros. (USSR) 54, 132(1983).Google Scholar
  250. 250.
    G. A. Volkova, N. N. Krillova, E. N. Pavlovskaya, and A. V. Yakovleva, J. Appl. Spec-trosc. 41, 1194(1984).Google Scholar
  251. 251.
    B. Eliasson and U. Kogelschatz, Appl. Phys. B46, 299(1988).Google Scholar
  252. 252.
    A. P. Gochelashvili, A. V. Dem'yanov, J. V. Kochetov, and L. R. Yangurazova, Laser Phys. 3, 140(1993).Google Scholar
  253. 253.
    V. V. Ivanov, K. S. Klopovskii, Yu. A. Mankelevich, A. T. Rakhimov, T. V. Rakhimova, G. B. Rulev, and V. B. Saenko, Laser Phys. 6, 654(1996).Google Scholar
  254. 254.
    F. Vollkommer and L. Hitzschke, in Proc. 8th Int. Symp. on the Science and Technology of Light Sources (LS-8), Greifswals (1998), pp. 51–60.Google Scholar
  255. 255.
    A. Oda, H. Sugarawa, Y. Sakai, and H. Akashi, J. Phys. D: Appl. Phys. 33, 1507(2000).Google Scholar
  256. 256.
    A. M. Boichenko, S. I. Yakovlenko, and V. F. Tarasenko, Laser and Particle Beams 18, 655(2000).Google Scholar
  257. 257.
    R. J. Carman, B. K. Ward, and R. P. Mildren, in Proc. 25th Int. Conf. on Phenomena in Ionized Gases (XXV ICPIG), Nagoya 2001, Vol. 4, pp. 331–332.Google Scholar
  258. 258.
    U. Kogelschatz, in Proc. 20th Int. Conf. on Phenomena in Ionized Gases (XX ICPIG), Pisa (1991), Invited Papers, pp. 218–227.Google Scholar
  259. 259.
    H. Esrom and U. Kogelschatz, Appl. Surf. Sci. 54, 440(1992).Google Scholar
  260. 260.
    M. Lenk and R. Mehnert, in Proc. Rad Tech Europe, Basle (2001), pp. 153–158.Google Scholar
  261. 261.
    H. Kumagai and M. Obara, Appl. Phys. Lett. 54, 2619(1989).Google Scholar
  262. 262.
    H. Kumagai and M. Obara, Appl. Phys. Lett. 55, 1583(1989).Google Scholar
  263. 263.
    H. Kumagai and K. Toyoda, Appl. Phys. Lett. 59, 2811(1991).Google Scholar
  264. 264.
    Z. Falkenstein and J. J. Coogan, J. Phys. D: Appl. Phys. 30, 2704(1997).Google Scholar
  265. 265.
    J.-Y. Zhang and I. W. Boyd, J. Appl. Phys. 84, 1174(1998).Google Scholar
  266. 266.
    T. Gerber, W. Luethy, and P. Burkhardt, Opt. Comm. 35, 242(1980).Google Scholar
  267. 267.
    V. M. Borisov, A. M. Davidovskii, and O. B. Kristoforov, Sov. J. Quantum Electron. 12, 1403(1982).Google Scholar
  268. 268.
    A. M. Boichenko, V. S. Skakun, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, Laser Phys. 4, 635(1994).Google Scholar
  269. 269.
    V. F. Tarasenko, M. I. Lomaev, A. N. Pachenko, V. S. Skakun, and E. A. Sosnin, High-power UV excilamps, in High Power Lasers—Science and Engineering (R. Kossowsky, M. Jelinek, and R. F. Walter, eds.), Kluwer Academic Publishers, Dordrecht (1996), pp. 331–345.Google Scholar
  270. 270.
    J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, Proc. SPIE 3574, 466(1998).Google Scholar
  271. 271.
    S. Bollanti, G. Clementi, P. Di Lazzaro, F. Flora, G. Giordano, T. Letardi, F. Muzzi, G. Shina, and Z. E. Zheng, IEEE Trans. Plasma Sci. 27, 211(1999).Google Scholar
  272. 272.
    A. M. Boichenko, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, and S. I. Yakovlenko, Laser Phys. 10, 540(2000).Google Scholar
  273. 273.
    U. Kogelschatz, Appl. Surf. Sci. 54, 410(1992).Google Scholar
  274. 274.
    K. Stockwald and M. Neiger, Contrib. Plasma Phys. 35, 15(1995).Google Scholar
  275. 275.
    J.-Y. Zhang and I. W. Boyd, J. Appl. Phys. 80, 633(1996).Google Scholar
  276. 276.
    I. W. Boyd and J.-Y. Zhang, Nucl. Instrum. Methods B121, 349(1997).Google Scholar
  277. 277.
    U. Kogelschatz, H. Esrom, J.-Y. Zhang, and I. W. Boyd, Appl. Surf. Sci. 168, 29(2000).Google Scholar
  278. 278.
    R. Mehnert, UV Curing Equipment—Monochromatic UV Lamps, in UV and EB Curing Technology and Equipment (R. Mehnert, A. Pincus, I. Janorski, R. Stowe, A. Bereika, eds.), John Wiley/SITA (1999), Chapter 4, pp. 83–105.Google Scholar
  279. 279.
    U. Kogelschatz, UV production in dielectric barrier discharges for pollution control, in Non-Thermal Plasma Techniques for Pollution Control (B. M. Penetrante and S. E. Schultheis, eds.), NATO ASI Series, Vol. G 34, Part B, Springer, Berlin (1993), pp. 339–354.Google Scholar
  280. 280.
    O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev. 93, 671(1993).Google Scholar
  281. 281.
    H. Esrom, J. Demny, and U. Kogelschatz, Chemtronics 4, 202(1989).Google Scholar
  282. 282.
    J.-Y. Zhang, L.-J. Bie, and I. W. Boyd, Jpn. J. Appl. Phys. 37, L27(1998).Google Scholar
  283. 283.
    J.-Y. Zhang, B. Lim, and I. W. Boyd, Thin Solid Films 336, 340(1998).Google Scholar
  284. 284.
    J.-Y. Zhang and I. W. Boyd, Opt. Mater. 9, 251(1998).Google Scholar
  285. 285.
    J.-Y. Zhang and I. W. Boyd, Mat. Sci. Semicond. Process. 3, 345(2000).Google Scholar
  286. 286.
    I. W. Boyd and J.-Y. Zhang, Mat. Res. Soc. Symp. 617, J4.1.1.(2000).Google Scholar
  287. 287.
    H. Esrom, J.-Y. Zhang, and U. Kogelschatz, Mat. Res. Symp. Proc. 236, 39(1992).Google Scholar
  288. 288.
    J.-Y. Zhang, H. Esrom, U. Kogelschatz, and G. Emig, Modification of polymers with UV excimer radiation from lasers and lamps, J. Adhesion Sci. Technol. 8, 1179(1994).Google Scholar
  289. 289.
    J.-Y. Zhang, H. Esrom, G. Emig, and U. Kogelschatz, Modification of polymers with UV excimer radiation from lasers and lamps, in Polymer Surface Modification: Relevance to Adhesion (K. L. Mittal, ed.), VSP International Science Publishers, Utrecht (1996) pp. 153–185.Google Scholar
  290. 290.
    H. Esrom, Y.-J. Zhang, and U. Kogelschatz, Photochemical modification and etching of PTFE with excimer VUV/UV radiation in Polymer Surfaces and Interfaces: Characterization, Modification and Application (K. L. Mittal and K.-W. Lee, eds.), VSP International Science Publishers (1997), pp. 27–35.Google Scholar
  291. 291.
    I. W. Boyd, V. Craciun, and A. Kazor, Jpn. J. Appl. Phys. 32, 6141(1993).Google Scholar
  292. 292.
    V. Craciun, B. Hutton, D. E. Williams, and I. W. Boyd, Electron. Lett. 34, 71(1998).Google Scholar
  293. 293.
    J.-Y. Zhang and I. W. Boyd, Appl. Surf. Sci. 186, 64(2002).Google Scholar
  294. 294.
    J. Heitz, H. Niino, and A. Yabe, Appl. Phys. Lett. 68, 2648(1966).Google Scholar
  295. 295.
    H. Esrom and U. Kogelschatz, Thin Solid Films 218, 231(1992).Google Scholar
  296. 296.
    C. Beneking, H. Dannert, M. Neiger, V. Schorpp, K. Stockwald, and H. Müller, Neuartige UV-Lampen auf der Basis stiller Entladungen, BMFT (Bundesministerium für Forschung und Technologie), Forschungsbericht FKZ 12N5695 (1992) (in German).Google Scholar
  297. 297.
    T. Urakabe, S. Harada, T. Saikatsu, and M. Karino, in Proc. 7th Int. Symp. on the Science and Technology of Light Sources (LS7), Kyoto (1995), pp. 159–160.Google Scholar
  298. 298.
    M. Ilmer, R. Lecheler, H. Schweizer, and M. Seibold, in Proc. SID Int. Symp., Long Beach, CA (2000), Digest of Technical Papers, Vol. XXXI, pp. 931–933.Google Scholar
  299. 299.
    S. Mikoshiba, Gas-discharge displays, in Wiley Encyclopedia of Electrical and Electronic Engineering (J. G. Webster, ed.), Wiley-Interscience, New York (1999), vol. 8, pp. 233–238.Google Scholar
  300. 300.
    J. K. Lee and J. P. Verboncoeur, Plasma display panel in Low Temperature Plasma Physics: Fundamental Aspects and Applications (R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds.), Wiley-VCH: Weinheim (2001), pp. 367–385.Google Scholar
  301. 301.
    H. G. Slottow, IEEE Trans. Plasma Sci. 23, 760(1976).Google Scholar
  302. 302.
    D. L. Bitzer and H. G. Slottow, in Proc. 29th AFIPS Conf., Washington (1966), pp. 541–547.Google Scholar
  303. 303.
    L. Loeb and J. El Baccal, J. Appl. Phys. 33, 1567(1962).Google Scholar
  304. 304.
    W. L. Harries and A. von Engel, Proc. Phys. Soc. (London) B64, 916(1951).Google Scholar
  305. 305.
    H. J. Hoehn and R. A. Martel, IEEE Trans. Electron. Dev. 20, 1078(1973).Google Scholar
  306. 306.
    I. Revel, Ph. Belenguer, J. P. Boeuf, and L. C. Pitchford, Pure Appl. Chem. 71, 1837(1999).Google Scholar
  307. 307.
    R. T. Wegh, H. Donker, E. V. D. van Loef, K. D. Oskam, and A. Meijering, J. Luminesc. 87–89, 1017(2000).Google Scholar
  308. 308.
    M. Miclea, K. Kunze, G. Musa, J. Franzke, and K. Niemax, Spectrochimica Acta B56, 37(2001).Google Scholar
  309. 309.
    K. Okazaki and T. Nozaki, Ultrashort pulsed barrier discharges and applications, Pure Appl. Chem. 74, 317(2002).Google Scholar
  310. 310.
    V. I. Gibalov and G. J. Pietsch, J. Phys. D: Appl. Phys. 33, 2618(2000).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Ulrich Kogelschatz
    • 1
  1. 1.Retired from ABB Corporate ResearchSwitzerland

Personalised recommendations