Solar Physics

, Volume 211, Issue 1–2, pp 31–52 | Cite as

Polar Coronal Holes During Cycles 22 and 23

  • Karen L. Harvey
  • Frank Recely


The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (∼ 60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andretta, V. and Jones, H. P.: 1997, Astrophys. J. 489, 375.Google Scholar
  2. Bohlin, J. D.: 1977, Solar Phys. 51, 377.Google Scholar
  3. Bohlin, J. D. and Sheeley, N. R., Jr.: 1978, Solar Phys. 56, 125.Google Scholar
  4. Bravo, S. and Steward, G. A.: 1994, Solar Phys. 154, 377.Google Scholar
  5. Bravo, S., Steward, G. A., and Blanco-Cano, X.: 1998, Solar Phys. 179, 223.Google Scholar
  6. Broussard, R. M., Sheeley, N. R., Jr., Tousey, R., and Underwood, J. H.: 1978, Solar Phys. 56, 161.Google Scholar
  7. Durrant, C. J., Kress, J. M., and Wilson, P. R.: 2001, Solar Phys. 201, 57.Google Scholar
  8. Fox, P., McIntosh, P., and Wilson, P. R: 1998, Solar Phys. 177, 375.Google Scholar
  9. Goldberg, L.: 1939, Astrophys. J. 89, 673.Google Scholar
  10. Harvey, K. L.: 1996, in 'Proceedings of the Eighth International Solar Wind Conference', AIP Conference Proceedings 382,9.Google Scholar
  11. Maravilla, D., Lara, A., Valdés-Galicia, J. F., and Mendoza, B.: 2001, Solar Phys. 203, 27.Google Scholar
  12. Makarov, V. V., Tlatov, A. G., and Sivaraman, K. R.: 2001, Solar Phys. 202, 11.Google Scholar
  13. Obridko, V. N. and Shelting, B. D.: 1999, Solar Phys. 187, 185.Google Scholar
  14. Sanchez-Ibarra, A. and Barraza-Paredes, M.: 1992, Report UAG-102, WDCA, Boulder, Colorado.Google Scholar
  15. Sheeley, N. R., Jr.: 1980, Solar Phys. 65, 229.Google Scholar
  16. Sheeley, N. R., Jr., DeVore, C. R., and Boris, J. B.: 1985, Solar Phys. 98, 219.Google Scholar
  17. Sheeley, N. R., Jr., Wang, Y.-M., and DeVore, C. R.: 1989, Solar Phys. 124, 1.Google Scholar
  18. Sheeley, N. R., Jr., Wang, Y.-M., and Harvey, J. W.: 1989, Solar Phys. 119, 323.Google Scholar
  19. Simpson, J. A., Zhang, M., and Bame, S.: 1996, Astrophys. J. 465, L29.Google Scholar
  20. Smith, E. J., Jokipii, J. R., Kó ta, J., Lepping, R. P., and Szabo, A.: 2000, Astrophys. J. 533, 1084.Google Scholar
  21. Smith, E. J., Balogh, A., Forsyth, R. J., and McComas, D. J.: 2001, Geophys. Res. Let. 28, 4159.Google Scholar
  22. Snodgrass, H. B., Kress, M. J., and Wilson, P. R.: 2000, Solar Phys. 191, 1.Google Scholar
  23. Waldmeier, M.: 1957, Die Sonnenkorona, Vol. II, Birckhauser, Basel, p. 65.Google Scholar
  24. Waldmeier, M.: 1981, Solar Phys. 70, 251.Google Scholar
  25. Wang, Y.-M. and Sheeley, N. R., Jr.: 1996, Astrophys. J. 447, L143.Google Scholar
  26. Wang, Y.-M., Hawley, S. H., and Sheeley, N. R., Jr.: 1996, Science 271, 464.Google Scholar
  27. Webb, D. F., Davis, J. M., and McIntosh, P. S.: 1984, Solar Phys. 92, 109.Google Scholar
  28. Zirin, H.: 1988, Astrophysics of the Sun, Cambridge University Press, Cambridge, p. 198.Google Scholar
  29. Zirker, J. B.: 1977, Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Karen L. Harvey
    • 1
  • Frank Recely
    • 2
  1. 1.Solar Physics Research CorporationTucsonU.S.A
  2. 2.Space Environment LaboratoryNOAATucsonU.S.A

Personalised recommendations