Neurochemical Research

, Volume 23, Issue 3, pp 385–392 | Cite as

αB-Crystallin is Associated with Intermediate Filaments in Astrocytoma Cells

  • Thomas Wisniewski
  • James E. Goldman


αB-crystallin, a major protein of the vertebrate lens and a member of the small heat shock protein family, is expressed in non-lenticular tissues, including the central nervous system, where it is found mainly in glia. In Rosenthal fibers (RF), astrocytic inclusions that accumulate in Alexander's Disease, αB-crystallin is found with hsp27 and skeins of intermediate filaments (IF) of the GFAP and vimentin types. We have investigated the association between IF and αB-crystallin in a human astrocytoma cell line, U-373MG, which expresses αB-crystallin. Cytoskeletal preparations contained αB-crystallin, and a filamentous pattern in which αB-crystallin co-localized with GFAP and vimentin by double label immunofluorescence. Immuno-electronmicroscopy confirmed the localization to IF. GFAP isolated from bovine brain and re-assembled, was associated with αB-crystallin. Thus, a proportion of αB-crystallin in astroglia is associated with IF, and this association may be critical in the formation of RF.

Alpha B-crystallin intermediate filaments astrocytes GFAP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    deJong, W. W., Leunissen, J. A., and Voorter, C. E. 1993. Evolution of the alpha-crystallin/small heat shock protein family. Mol. Biol. Evol. 10:103-126.PubMedGoogle Scholar
  2. 2.
    Bhat, S. P., and Nagineni, C. N. 1988. αB subunit of lens-specific protein α-crystallin is present in other ocular and nonocular tissues. Biochem. Biophys. Res. Commun. 158:319-325.Google Scholar
  3. 3.
    Dubin, R. A., Wawrousek, E. F., and Piatigorsky, J. 1989. Expression of the murine αB-crystallin gene is not restricted to the lens. Mol. Cell Biol. 9:1083-1091.PubMedGoogle Scholar
  4. 4.
    Duguid, J. R., Rohwer, R. G., and Seed, B. 1988. Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc. Natl. Acad. Sci. USA. 85:5738-5742.Google Scholar
  5. 5.
    Iwaki, T., Kume-Iwaki, A., Liem, R. K. H., and Goldman, J. E. 1989. αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell. 57:71-78.PubMedGoogle Scholar
  6. 6.
    Iwaki, T. Kume-Iwaki, A., and Goldman, J.E., 1990. Cellular distribution of αB-crystallin in non-lenticular tissue. J. Histochem. Cytochem. 38:31-39.PubMedGoogle Scholar
  7. 7.
    Klemenz, R., Frohli, E., Steiger, R. H., Schafer, R., and Aoyama, A. 1991. αB-crystallin is a small heat shock protein. Proc. Natl. Acad. Sci. USA. 88:3652-3656.Google Scholar
  8. 8.
    Iwaki, T., Iwaki, A., Tateishi, J., Sakaki, Y., and Goldman, J. E. 1993. αB-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am. J. Path. 143:487-495.PubMedGoogle Scholar
  9. 9.
    Kegel, K. B., Iwaki, A., Iwaki, T., and Goldman, J. E. 1996. αB-crystallin protects glial cells from hypertonic stress. Am. J. Physiol. 270:C903-C909.PubMedGoogle Scholar
  10. 10.
    Head, M. W., Hurwitz, L., and Goldman, J. E. 1996. Transcriptional regulation of αB-crystallin in astrocytes: analysis of HSF and AP1 activation by different types of physiological stress. J. Cell Sci. 109:1029-1039.PubMedGoogle Scholar
  11. 11.
    Horwitz, J. 1992. Alpha crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA. 89:10449-10453.Google Scholar
  12. 12.
    Jakob, U., Gaestel, M., Engle, K., and Buchner, J. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268:1517-1520.PubMedGoogle Scholar
  13. 13.
    Carver, J. A., Guerreiro, N., Nicholls, K. A., and Truscott, R. J. W. 1995. On the interaction of α-crystallin with unfolded proteins. Biochim. Biophys. Acta 1252:251-260.PubMedGoogle Scholar
  14. 14.
    Plater, M. L., Goode, D., and Crabbe, M. J. C. 1996. Effects of site-directed mutations on the chaperone-like activity of αB-crystallin. J. Biol. Chem. 271:28558-28566.PubMedGoogle Scholar
  15. 15.
    Atomi, Y., Yamada, S., Strohman, R., and Nonomura, Y. 1991. αB-crystallin in skeletal muscle: purification and localization. J. Biochem. 110:812-822.PubMedGoogle Scholar
  16. 16.
    Bennardini, F., Wrzosek, A., and Chiesi, M. 1992. αB-crystallin in cardiac tissue. Association with actin and desmin filaments. Cir. Res. 71:288-294.Google Scholar
  17. 17.
    Gopalakrishnan, S., and Takemoto, L. 1992. Binding of actin to lens alpha crystallins. Curr. Eye Res. 11:929-933.PubMedGoogle Scholar
  18. 18.
    Wang, K., and Spector A. 1996. α-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur. J. Biochem. 242:56-66.PubMedGoogle Scholar
  19. 19.
    Iwaki, T., Iwaki, A., Tateishi, J., and Goldman, J. E. 1994. Sense and antisense modification of glial αB-crystallin production results in alterations of stress fiber formation and thermoresistance. J. Cell Biol. 125:1385-1393.PubMedGoogle Scholar
  20. 20.
    FitzGerald, P. G., and Graham, D. 1991. Ultrastructural localization of α-crystallin to the bovine lens fiber cell cytoskeleton. Curr. Eye Res. 10:417-436.PubMedGoogle Scholar
  21. 21.
    Nicholl, I. D., and Quinlan, R. A. 1994. Chaperone activity of alpha-crystallins modulates intermediate filament assembly. EMBO J. 13:945-953.PubMedGoogle Scholar
  22. 22.
    Carter, J. M., Hutcheson, A. M., and Quinlan, R. A. 1995. In vitro studies on the assembly properties of the lens proteins CP49, CP115: coassembly with alpha-crystallin but not with vimentin. Exp. Eye Res. 60:181-192.PubMedGoogle Scholar
  23. 23.
    Lowe, J., McDermott, H., Pike, I., Spendlove, I., Landon, M., and Mayer, R. J. 1992. αB-crystallin expression in non-lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J. Pathol. 166:61-68.PubMedGoogle Scholar
  24. 24.
    Kato, S., Hirano, A., Umahara, T., Kato, M., Herz, R., and Ohama, E. 1992. Comparative immunohistochemical study on the expression of αB-crystallin, ubiquitin and stress-response protein 27 in ballooned neurons in various disorders. Neuropathol. Appl. Neurobiol. 18:335-340.PubMedGoogle Scholar
  25. 25.
    Alexander, W. S. 1949. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 72:373-381.PubMedGoogle Scholar
  26. 26.
    Borrett, D., and Becker, L. E. 1985. Alexander's disease. A disease of astrocytes. Brain 108:367-385.PubMedGoogle Scholar
  27. 27.
    Ogasawara, N. 1965. Multiple skelerose mit Rosenthalschen fasern. Acta Neuropathol. (Berl) 5:61-68.PubMedGoogle Scholar
  28. 28.
    Russell, D. S., and Rubenstein, L. J. 1989. Pathology of Tumors of Nervous System. Fifth Edition. William and Wilkens, Baltimore, MD.Google Scholar
  29. 29.
    Herndon, R., Rubinstein, L. J., and Freeman, J. M. 1970. Light and electron microscopic observations on Rosenthal fibers in Alexander's and in multiple sclerosis. J. Neuropath. Exp. Neurol. 29:524-551.PubMedGoogle Scholar
  30. 30.
    Johnson, A. B., and Bettica, A. 1989. On-grid immunogold labeling of glial intermediate filaments in epoxy-embedded tissue. Am. J. Path. 185:335-341.Google Scholar
  31. 31.
    Dinda, A. K., Sarkar, C., and Roy, S. 1990. Rosenthal fibers: an immunohistochemical, ultrastructural, and immunoelectronmicroscopic study. Acta Neuropathol. (Berl) 79:456-460.PubMedGoogle Scholar
  32. 32.
    Lach, B., Sikorska, M., Rippstein, P., Gregor, A., Staines, W., and Davie, T. R. 1991. Immunoelectron microscopy of Rosenthal fibers. Acta Neuropathol. (Berl) 8:503-509.Google Scholar
  33. 33.
    Tomokane, N., Iwaki, T., Tateishi, J., Iwaki, A., and Goldman, J. E. 1991. Rosenthal fibers share epitopes with αB-crystallin, glial fibrillary acidic protein and ubiquitin but not with vimentin: immunoelectron microscopy with colloidal gold. Am. J. Pathol. 138:875-885.PubMedGoogle Scholar
  34. 34.
    Ponten, J., and Westermark, B. 1978. Properties of human malignant glioma cells in vitro. Med. Biol. 56:184-193.PubMedGoogle Scholar
  35. 35.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.PubMedGoogle Scholar
  36. 36.
    Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.PubMedGoogle Scholar
  37. 37.
    Towbin, H., Stehelin, T., and Gordon, J. 1979. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 7:4354-4356.Google Scholar
  38. 38.
    Hsu, S. M., Raine, L., and Fanger, H. 1981. Use of the avidinbiotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody PAP procedures. J. Histochem. Cytochem. 29:577-580.PubMedGoogle Scholar
  39. 39.
    O'Farrell, P. Z., Goodman, H. M., and O'Farrell, P. H. 1977. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133-1142.PubMedGoogle Scholar
  40. 40.
    Liem, R. K. H. 1982. Simultaneous separation and purification of neurofilament and glial filament proteins from brain. J. Neurochem. 38:142-150.PubMedGoogle Scholar
  41. 41.
    Yang, H.-Y., Lieska, N., Goldman, A. E., and Goldman, R. D. 1985. A 300,000-mol-wt intermediate filament associated protein in baby hamster kidney (BHK-21) cells. J. Cell. Biol. 100:620-631.PubMedGoogle Scholar
  42. 42.
    Bloemendal, H., and Groenewoud, G. 1981. One-step separation of the subunits of α-crystallin by chromatofocusing in 6 M urea. Anal. Biochem. 117:327-329.PubMedGoogle Scholar
  43. 43.
    Bloemendal, H. 1982. Lens proteins. Crit. Rev. Biochem. 12:1-39.Google Scholar
  44. 44.
    Spector, A., Chiesa, R., Sredy, J., and Garner, W. 1985. cAMP-dependent phosphorylation of bovine lens α-crystallin. Proc. Natl. Acad. Sci. USA. 82:4712-4716.Google Scholar
  45. 45.
    Goldman, J. E., and Corbin, E. 1991. Rosenthal fibers contain ubiquitinated αB-crystallin. Am. J. Pathol. 139:933-938.PubMedGoogle Scholar
  46. 46.
    Groenen, P. J. T. A., Merck, K. B., deJong, W. W., and Bloemendal, H. 1994. Structure and modifications of the junior chaperone α-crystallin. From lens transparency to molecular pathology. Eur. J. Biochem. 225:1-19.PubMedGoogle Scholar
  47. 47.
    Mann, E., McDermott, M. J., Goldman, J. E., Chiesa, R., and Spector, A. 1991. Phosphorylation of α-crystallin B in Alexander's disease brain. FEBS Lett. 294:133-136.PubMedGoogle Scholar
  48. 48.
    Chiesa, R., Goldman, J. E., and Spector, A. 1992. Okadaic acid increases alpha crystallin B phosphorylation in lens epithelial cells and astrocytoma cells in culture. Investig. Ophthal. Visual Sci. 33:1251. (Abstract)Google Scholar
  49. 49.
    Chiesa, R., McDermott, M. J., Mann, E., and Spector, A. 1990. The apparent molecular size of native alpha-crystallin B in non-lenticular tissues. FEBS Lett. 268:222-226.PubMedGoogle Scholar
  50. 50.
    Longoni, S., James, P., and Chiesi, M. 1990. Cardiac alpha-crystallin I. Isolation and identification. Mol. Cell. Biochem. 97:113-120.Google Scholar
  51. 51.
    Yang, H.-Y., Lieska, N., and Goldman, R. D. 1990. Intermediate filament-associated proteins. Pages. 371-391, in R. D. Goldman and P. M. Steinert (ed.), Cellular and Molecular Biology of Intermediate Filaments. New York, London: Plenum Publishing Corp.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Thomas Wisniewski
    • 1
  • James E. Goldman
    • 2
  1. 1.Department of NeurologyNew York University Medical CenterNew York
  2. 2.Department of Pathology, Division of Neuropathology, and the Center for Neurobiology and BehaviorColumbia University, College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations