Journal of Algebraic Combinatorics

, Volume 3, Issue 4, pp 405–425

Projective Planes of Order q whose Collineation Groups have Order q2

  • William M. Kantor
Article

Abstract

Translation planes of order q are constructed whose full collineation groups have order q2.

collineation group projective plane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bender, H., “Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben,” Math. Z. 104 (1968) 175–204.Google Scholar
  2. 2.
    Charnes, C., “A non-symmetric translation plane of order 17 2,” J. Geometry 37 (1990), 77–83.Google Scholar
  3. 3.
    Dembowski, P., Finite Geometries. Springer, Berlin-Heidelberg-New York, 1968.Google Scholar
  4. 4.
    Goethals, J.-M., and Snover, S. L., “Nearly perfect binary codes,” Discrete Math. 3 (1972), 65–68.Google Scholar
  5. 5.
    Kantor, W. M., “Line-transitive collineation groups of finite projective spaces,” Israel J. Math. 14 (1973), 229–235.Google Scholar
  6. 6.
    Kantor, W. M., “Spreads, translation planes and Kerdock sets. I,” SIAM J. Algebraic and Discrete Methods 3 (1982), 151–165.Google Scholar
  7. 7.
    Kantor, W. M., “Spreads, translation planes and Kerdock sets. II,” SIAM J. Algebraic and Discrete Methods 3 (1982), 308–318.Google Scholar
  8. 8.
    Kantor, W. M., “An exponential number of generalized Kerdock codes,” Inform. and Control 53 (1982), 74–80.Google Scholar
  9. 9.
    Kantor, W. M., “Expanded, sliced and spread spreads,” pp. 251–261 in Finite Geometries: Proc. Conf. in Honor of T. G. Ostrom, Dekker, New York 1983.Google Scholar
  10. 10.
    Lang, S., Algebra, Addison-Wesley, Reading 1971.Google Scholar
  11. 11.
    MacWilliams, F. J., and Sloane, N. J. A., The Theory of Error-Correcting Codes. North-Holland, Amsterdam 1977.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • William M. Kantor
    • 1
  1. 1.Department of MathematicsUniversity of OregonEugene

Personalised recommendations