Advertisement

Hyperfine Interactions

, Volume 141, Issue 3–4, pp 643–652 | Cite as

Mössbauer Spectroscopic Studies of an Oxidized Ordinary Chondrite Fallen at Itawa-Bhopji, India

  • H. C. Verma
  • A. Rawat
  • B. S. Paliwal
  • R. P. Tripathi
Article

Abstract

Mössbauer studies of the Itawa-Bhopji meteorite fallen on May 30, 2000 in Rajasthan, India, show that the main iron minerals in it are Fe–Ni (kamacite/taenite), troilite, olivine and pyroxene. These provide characteristic signatures of an ordinary chondrite. Mössbauer absorption areas corresponding to different phases favour its classification as L/LL-type ordinary chondrite. The iron in the olivine is unusually high and the metallic iron is quite low, showing that it has faced oxidizing conditions prior to fall.

meteorite chondrite Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paliwal, B. S., Tripathi, R. P., Verma, H. C. and Sharma, S. K., Meteorit. Planet. Sci. 35 (2000), 639.Google Scholar
  2. 2.
    Tripathi, R. P., Sharma, S. K., Srivastava K. L. and Verma, H. C., Meteorit. Planet. Sci. 35 (2000), 201.Google Scholar
  3. 3.
    Dodd, R. T., Meteorites: A Petrologic-Chemical Synthesis, Cobridge Univ. Press, Cambridge, UK, 1981, 368 pp.Google Scholar
  4. 4.
    Bland, P. A., Sexton, A. S., Jull, A. J. T., Bevan, A. W. R., Berry, F. J., Thornley, D. M., Astin, T. R., Britt, D. T. and Pillinger, C. T., Geochim. Cosmochim. Acta 62 (1998), 3169.Google Scholar
  5. 5.
    Lipschutz, M. E. et al., Meteoritics 28 (1993), 528.Google Scholar
  6. 6.
    Bhandari, N. et al., Meteoritics 23 (1988), 103.Google Scholar
  7. 7.
    Bian, D., Meteoritics 16 (1981), 119.Google Scholar
  8. 8.
    Rubin, A. E., Geochim. Cosmochim. Acta 54 (1990), 1217.Google Scholar
  9. 9.
    Gismelseed, A. M., Khangi, F., Ibrahim, A., Yousuf, A. A., Worthing, M. A., Rais, A., Elzain, M. E., Brooks, C. K. and Sudherland, M. H., Hyp. Interact. 91 (1994), 551.Google Scholar
  10. 10.
    Jenniskens, P. et al., Meteoritics 29 (1994), 246.Google Scholar
  11. 11.
    Spencer, L. J., Min. Mag. 24 (1937), 437.Google Scholar
  12. 12.
    Paliwal, B. S., Vaya, V. K. and Chouhan, D. S., Current Sci. 73 (1997), 499.Google Scholar
  13. 13.
    Bhandari, N., Murty, S. V. S., Shukla, P. N., Shukla, A. D., Mahajan, R. R., Sarin, M. M., Srinivasan, G., Suthar, K. M., Sisodia, M. S., Jha S. and Bischoff, A., Meteorit. Planet. Sci. 37 (2002), 549.Google Scholar
  14. 14.
    Rubin, A. E., Meteorit. Planet. Sci. 32 (1997), 231.Google Scholar
  15. 15.
    Zemcik, T. and Cimbalnikova, A., In: Application in Mössbauer Effect, Gordon and Breach Science Publishers, New York, USA, 1985, p. 1779.Google Scholar
  16. 16.
    Bancroft, C. M., Burns, R. G. and Stone, A. J., Geochim. Cosmochim. Acta 32 (1968), 547.Google Scholar
  17. 17.
    Sprenkel-Segel, E. L. and Hanna, S. S., Geochim. Cosmochim. Acta 28 (1964), 1913.Google Scholar
  18. 18.
    Dunlap, R. A., Hyp. Interact. 110 (1997), 209.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • H. C. Verma
    • 1
  • A. Rawat
    • 1
  • B. S. Paliwal
    • 2
  • R. P. Tripathi
    • 3
  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia
  2. 2.Department of GeologyJai Narain Vyas UniversityJodhpurIndia
  3. 3.Department of PhysicsJai Narain Vyas UniversityJodhpurIndia

Personalised recommendations