Neurochemical Research

, Volume 23, Issue 5, pp 727–732 | Cite as

Decreased Serum Choline Concentrations in Humans after Surgery, Childbirth, and Traumatic Head Injury

  • Ismail H. Ulus
  • Gürayten Özyurt
  • Ender Korfali


The serum levels of choline decreased by approximately 50% in patients having a surgery under general as well as epidural anesthesia. The decrease is lasts for two days after surgery. Intravenous administration of succinylcholine, either by a single bolus injection or by a slow continuous infusion, increased the serum choline levels several folds during surgery. In these patients, a significant decrease in the serum choline levels was observed one and two days after surgery. In 16 pregnant women at the term, serum choline levels were higher than the value observed in 19 non-pregnant women. The serum choline levels decreased by about 40% or 60% after having a child-birth either by vaginal delivery or caesarean section, respectively. Serum choline levels in blood obtained from 9 patients with traumatic head injury were significantly lower than the observed levels in blood samples obtained from healthy volunteers. These observations show that serum choline levels increase during pregnancy and decrease during stressful situations in humans.

Choline serum choline surgical stress pregnancy childbirth stress traumatic injury head trauma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blusztajn, J. K., and Wurtman, R. J. 1983. Choline and cholinergic neurons. Science 22:614–620.Google Scholar
  2. 2.
    Wurtman, R. J. 1992. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. TINS 15:117–122.Google Scholar
  3. 3.
    Zeisel, S. H. 1990. Choline deficiency. J. Nutr. Biochem. 1:332–349.Google Scholar
  4. 4.
    Maire, J.-C. E., and Wurtman, R. J. 1985. Effects of electrical stimulation and choline availability on the release and contents of acetylcholine and choline in superfused slices from rat striatum. J. Physiol (Paris). 80:189–195.Google Scholar
  5. 5.
    Ulus, I. H., Wurtman, R. J., Mauron, C., and Blusztajn, J. K. 1989. Choline increases acetylcholine release and protects against the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res. 484:217–227.Google Scholar
  6. 6.
    Büyükuysal, R. L., Ulus, I. H., Aydin, S., and Kiran B. K. 1995. 3,4-Diaminopyridine and choline increase in vivo acetylcholine release in rat striatum. Eur. J. Pharmacol. 28:179–185.Google Scholar
  7. 7.
    Farber, S. A., Kischka, U., Marshall, D. L., and Wurtman, R. J. 1993. Potentiation by choline of basal and electrically evoked acetylcholine release, as studied using a novel device with both stimulates and perfuses rat corpus striatum. Brain Res. 607:177–184.Google Scholar
  8. 8.
    Johnson, D. A., Ulus, I. H., and Wurtman, R. J. 1992. Caffeine potentiates the enhancement by choline of striatal acetylcholine release. Life Sci. 51:1547–1601.Google Scholar
  9. 9.
    Ulus, I. H., and Wurtman, R. J. 1976. Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain. Science 194:1060–1061.Google Scholar
  10. 10.
    Ulus, I. H., Hirsch, M. J., and Wurtman, R. J. 1977. Trans-synaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: evidence that choline administration can increase cholinergic transmission. Proc. Natl. Acad. Sci. USA. 74:798–800.Google Scholar
  11. 11.
    Ulus, I. H., Scally, M. J., and Wurtman, R. J. 1978. Enhancement by choline of the induction of adrenal tyrosine hydroxylase by phenoxybenzamine, 6-hydroxydopamine, insulin or exposure to cold. J. Pharmacol. Exp. Ther. 204:676–682.Google Scholar
  12. 12.
    Wecker, L., and Schmith, D. E. 1980. Neuropharmacological consequences of choline administration. Brain Res. 184:234–238.Google Scholar
  13. 13.
    Savci, V., Gürün, M. S., Ulus, I. H., and Kiran, B. K. 1996. Intraventricular injection of choline increases plasma oxytocin levels in conscious rats. Brain Res. 709:97–102.Google Scholar
  14. 14.
    Savci, V., Gürün, M. S., Ulus, I. H., and Kiran, B. K. 1996. Effect of intracerebroventricularly injected choline on plasma ACTH and β-endorphin levels in conscious rats. Eur. J. Pharmacol. 309:275–280.Google Scholar
  15. 15.
    Millington, W. R., and Wurtman, R. J. 1982. Choline administration elevates brain phosphorylcholine concentrations. J. Neurochem. 38:1748–1752.Google Scholar
  16. 16.
    Slack, B. E., Ulus, I. H., and Wurtman, R. J. 1989. Experimental manipulations of phospholipid content in neuronal cell membranes. Pages 233–239, in Freysy, L., Hawthorne, J. N., and Toffano, G. (eds.). Neurochemical aspects of phospholipid metabolism, Fidia Research Series Vol 20, Liviana Press, Padova.Google Scholar
  17. 17.
    Lopez G.-Coviella, I., Agut, J., Ortiz, J. A., and Wurtman, R. J. 1992. Effects of orally administered cytidine5′-diphosphate choline on brain phospholipid content. J. Nutr. Biochem. 3:313–315.Google Scholar
  18. 18.
    Savci, V., and Wurtman, R. J. 1995. Effect of cytidine on membrane phospholipid synthesis in rat striatal slices. J. Neurochem. 64:378–384.Google Scholar
  19. 19.
    Lopez G.-Coviella, I., Agut, J., Savci, V., Ortiz, J. A., and Wurtman, R. J. 1995. Evidence that 5′-cytidinediphosphocholine can affect brain phospholipid composition by increasing choline and cytidine plasma levels. J. Neurochem. 65:889–894.Google Scholar
  20. 20.
    Growdon, J. H., Hirsch, M. J., Wurtman, R. J., and Weiner, W. 1977. Oral choline administration to patients with tardive dyskinesia. N. Engl. J. Med. 297:524–527.Google Scholar
  21. 21.
    Lopez G.-Coviella, I., Agut, J., Von Borstel, and Wurtman, R. J. 1987. Metabolism of cytidine (5′)-diphosphocholine (CDP-choline) following oral and intravenous administration to the human and the rat. Neurochem. Int. 11:293–297.Google Scholar
  22. 22.
    Sheard, N. F., DaCosta, K. A., and Ziesel, S. H. 1994. Accelerated uptake of an intravenously administered dose of choline chloride in choline-deficient humans. J. Nutr. Biochem. 5:303–307.Google Scholar
  23. 23.
    Buchman, A. L., Jenden, D. J., Maukarzel, A. A., Roch, M., Rice, K. M., Chang, A. S., and Ament, M. E. 1994. Choline pharmacokinetics during intermittent intravenous choline in human subjects. Clin. Pharmacol. Ther. 55:277–283.Google Scholar
  24. 24.
    Burt, M. E., Hanin, I., and Brennan, M. F. 1980. Choline deficiency associated with total parenteral nutrition. Lancet 2:638–639.Google Scholar
  25. 25.
    Sheard, N. F., Tayek, J. A., Bistrian, B. R., Blackburn, G. L., and Zisel, S. H. 1986. Plasma choline concentration in humans fed parenterally. Am. J. Clin. Nutr. 43:219–224.Google Scholar
  26. 26.
    Zeisel, S. H., DaCosta, K. A., Franklin, P. D., Alexander, E. A., Lamont, J. T., Sheard, N. F., and Beiser, A. 1991. Choline, an essential nutrient for humans. FASEB J. 5:2093–2098.Google Scholar
  27. 27.
    Conlay, L. A., Wurtman, R. J., Blusztajn, K. J., Lopez C-Coviella, I., Maher, T. J., and Evoniuk, G. E. 1986. Decreased plasma choline concentrations in marathon runners. N. Eng. J. Med. 315:892.Google Scholar
  28. 28.
    Conlay, L. A., Sabounjian, L. A., and Wurtman, R. J. 1992. Exercise and Neuromodulators: Choline and acetylcholine in marathon runners. Int. J. Sport Med. 13:141–142.Google Scholar
  29. 29.
    Rennick, B., Acara, M., Hysert, P., and Mookerjee, B. 1976. Choline loss during hemodialysis: homeostatic control of plasma choline concentrations. Kidney Int. 10:329–335.Google Scholar
  30. 30.
    Wang, F. L., and Haubrich, D. L. 1975. A simple, sensitive and specific assay for free choline plasma. Anal. Biochem. 63:195–201.Google Scholar
  31. 31.
    Haxholdt, O. S. T., Kehlet, H., and Dyrberg, V. 1981. Effect of fentanyl on the cortisol and hyperglycaemic response to abdominal surgery. Acta Anaesth. Scand. 25:434–436.Google Scholar
  32. 32.
    Lindahl, S., Norden, N., Nybell-Lindahl, G., and Westgren M. 1983. Endocrine response to during general and epidural anaesthesia for elective caesarean sections. Acta Anaesth. Scand. 27:50–55.Google Scholar
  33. 33.
    Pancheri, P., Biondi, M., Onofri, A., Carilli, L., Fraoli, F., Fabbri, A., Zichella, L., and Perrone, G. 1984. Concomitant release of peripheral ACTH and beta-endorphin during the stress of human labor. Neuroendocrinol. Lett. 6:295–301.Google Scholar
  34. 34.
    Garner, S. C., Mar, M.-H., and Zeisel, S. H. 1995. Choline distribution and metabolism in pregnant rats and fetuses are influenced by the choline content of the maternal diet. J. Nutr. 125:2851–2858.Google Scholar
  35. 35.
    Zeisel, S. H., Mar, M.-H., Zhou, Z., and da Costa K. A. 1995. Pregnancy and lactation are associated with diminished concentration of choline and its metabolites in rat liver. J. Nutr. 125:3049–3054.Google Scholar
  36. 36.
    Rohlfs, E. M., Garner, S. C., Mar, M.-H., and Zeisel, S. H. 1993. Glycerophosphocholine and phosphocholine are the major choline metabolites in rat milk. J. Nutr. 123:1762–1768.Google Scholar
  37. 37.
    Holmes-McNary, M. Q., Cheng, W.-L., Mar, M.-H., Fussell, S., and Zeisel, S. H. 1996. Choline and choline esters in human and rat milk and in infant formulas. Am. J. Clin. Nutr. 64:572–576.Google Scholar
  38. 38.
    Holmes-McNary, M. Q., Loy, R., Mar, M.-H., Albright, C. D., and Zeisel, S. H. 1997. Apoptosis is induced by choline deficiency in fetal brain and in PC12 cells. Dev. Brain Res. 101:9–16.Google Scholar
  39. 39.
    Meck, W. H., Smith, R. A., and Williams, C. L. 1988. Pre-and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev. Psychobiol. 21:339–353.Google Scholar
  40. 40.
    Meck, W. H., Smith, R. A., and Williams, C. L. 1989. Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. Behav. Neurosci. 103:1234–1241.Google Scholar
  41. 41.
    Loy, R., Heyer, D., Williams, C. L., and Meck, W. H. 1991. Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv. Exp. Med. Biol. 295:373–382.Google Scholar
  42. 42.
    Ulus, I. H., Arslan, B. Y., Savci, V., and Kiran, B. K. 1995. Restoration of blood pressure by choline treatment in rats made hypotensive by haemorrhage. Br. J. Pharmacol. 116:1911–1917.Google Scholar
  43. 43.
    Altura, B. M. 1978. Role of spleen in choline stimulation of reticuloendothelial system and resistance to acute hemorrhage. Proc. Soc. Exp. Biol. Med. 158:77–80.Google Scholar
  44. 44.
    Bouaziz, H., Tong, C., and Eisenach, J. C. 1995. Postoperative analgesia from intrathecal neostigmine in sheep. Anesth. Analg. 80:1140–1144.Google Scholar
  45. 45.
    Eisenach J. C., Detweiler, D. J., Tong, C., D'Angelo, R., and Hood D. D. 1996. Cerebrospinal fluid norepinephrine and acetylcholine concentrations during acute pain. Anesth. Analg. 82:621–626.Google Scholar
  46. 46.
    Heller, J. H. 1953. Stimulation of the reticuloendothelial system with choline. Science 118:253–354.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Ismail H. Ulus
    • 1
  • Gürayten Özyurt
    • 2
  • Ender Korfali
    • 3
  1. 1.Department of Pharmacology and Clinical PharmacologyUludag University Medical FacultyBursaTurkey
  2. 2.BursaTurkey
  3. 3.BursaTurkey

Personalised recommendations