Advertisement

Journal of Algebraic Combinatorics

, Volume 3, Issue 1, pp 113–128 | Cite as

Cyclic Arcs in PG(2, q)

  • L. Storme
  • H. Van Maldeghem
Article

Abstract

B.C. Kestenband [9], J.C. Fisher, J.W.P. Hirschfeld, and J.A. Thas [3], E. Boros, and T. Szönyi [1] constructed complete (q2q + l)-arcs in PG(2, q2), q ≥ 3. One of the interesting properties of these arcs is the fact that they are fixed by a cyclic protective group of order q2q + 1. We investigate the following problem: What are the complete k-arcs in PG(2, q) which are fixed by a cyclic projective group of order k? This article shows that there are essentially three types of those arcs, one of which is the conic in PG(2, q), q odd. For the other two types, concrete examples are given which shows that these types also occur.

k-arc conic M.D.S. code cyclic group 

References

  1. 1.
    E. Boros and T. Szönyi, “On the sharpness of a theorem of B. Segre,” Combin. 6 (3) (1986), 261–268.Google Scholar
  2. 2.
    P. Dembowski, Finite Geometries, Springer-Verlag, New York, 1968.Google Scholar
  3. 3.
    J.C. Fisher, J.W.P. Hirschfeld, and J.A. Thas, “Complete arcs in planes of square order,” Ann. Discrete Math. 30 (1986), 243–250.Google Scholar
  4. 4.
    J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Oxford, England, 1979.Google Scholar
  5. 5.
    J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, England, 1985.Google Scholar
  6. 6.
    J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Oxford University Press, Oxford, England, 1991.Google Scholar
  7. 7.
    D.R. Hughes and F. Piper, Projective Planes, Springer-Verlag, Berlin, 1973.Google Scholar
  8. 8.
    B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.Google Scholar
  9. 9.
    B.C. Kestenband, “A family of complete arcs in finite projective planes,” Colloq. Math LVII (1989), 59–67.Google Scholar
  10. 10.
    L. Lombardo-Radice, “Sul problema dei k-archi completi di S 2,q,” Boll. Un. Mat. Ital. 11 (1956), 178–181.Google Scholar
  11. 11.
    CM. O'Keefe and T. Penttila, “A new hyperoval in PG(2, 32),” J. Geom. 44 (1992), 117–139.Google Scholar
  12. 12.
    T. Penttila and I. Pinneri, “Irregular hyperovals in PG(2, 64),” J. Geom, to appear.Google Scholar
  13. 13.
    G. Pickert, “Free mobility in affine planes,” Proc. of the Conference on Algebra and Geometry, Kuwait, (1981), 153–157.Google Scholar
  14. 14.
    A.R. Sadeh, “Classification of k-arcs in PG(2, 11) and cubic surfaces in PG(3, 11),” Ph. D. thesis, University of Sussex, England, 1984.Google Scholar
  15. 15.
    B. Segre, Lectures on Modern Geometry. Cremonese, Roma, 1961.Google Scholar
  16. 16.
    B. Segre, “Ovali e curve σ nei piani di Galois di caratteristica due,” Atti dell' Accad. Naz. Lincei Rend. 32 (8) (1962), 785–790.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • L. Storme
    • 1
  • H. Van Maldeghem
    • 1
  1. 1.Department of Pure Math and Computer AlgebraUniversity of GentGentBelgium

Personalised recommendations