Journal of Global Optimization

, Volume 25, Issue 3, pp 263–282 | Cite as

An Electromagnetism-like Mechanism for Global Optimization



This paper proposes a new heuristic for global optimization. The method utilizes an attraction-repulsion mechanism to move the sample points towards the optimality. The proposed scheme can be used either as a stand-alone approach or as an accompanying procedure for other methods. Some test results on nonlinear test functions in the category of ``minor to moderate difficulty'' are included. The ease of implementation and flexibility of the heuristic show the potential of this new approach.

Global optimization Attraction–repulsion mechanism Population-based heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boender, C. G. E., Kan, A. H. G. R. and Timmer G. T. (1985), A stochastic approach to global optimization, Computational Mathematical Programming (NATO ASI Series), F15: 291-308.Google Scholar
  2. Cowan, E. W. (1968), Basic Electromagnetism, Academic Press, New York.Google Scholar
  3. Demirhan, M., Özdamar, L., Helvacıoĝlu, L. and Birbil, Ş. İ. (1999), FRACTOP: A geometric partitioning metaheuristic for global optimization, Journal of Global Optimization 14: 415-435.Google Scholar
  4. Dixon, L. C. W. and G. P Szegö, (1978). The global optimization problem: An introduction. Towards Global Optimization 2, North-Holland, Amsterdam, pp. 1-15.Google Scholar
  5. Fletcher, R. and Reeves, C. (1964), Function minimization by conjugate directions, Computer Journal 7: 149-154.Google Scholar
  6. Glover, J. K. F. and Laguna, M. (1995), Genetic algorithms and tabu search: Hybrids for optimization. Computers and Operations Research 22: 111-134.Google Scholar
  7. Hart, W. E. (1994), Adaptive Global Optimization with Local Search. PhD Thesis, University of California, San Diego, 1994.Google Scholar
  8. Huyer, W. and Neumaier, A. (1999), Global optimization by multilevel coordinate search. Journal of Global Optimization 14: 331-355.Google Scholar
  9. Kan, A. H. G. R. and Timmer, G. T. (1987), Stochastic global optimization methods, Part I: Clustering methods, Mathematical Programming 39: 27-56.Google Scholar
  10. Kan, A. H. G. R. and Timmer, G. T. (1987), Stochastic global optimization methods Part II: Multi level methods, Mathematical Programming 39: 57-78.Google Scholar
  11. Michalewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin.Google Scholar
  12. More, B. J. and Wu, Z. (1995), Global Smoothing and Continuation for Large-scale Molecular Optimization. Argonne National Laboratory, Illinois: Preprint MCS-P539-1095.Google Scholar
  13. Neumaier, A. (2001), Global optimization web site. Computational mathematics group, University of Vienna,, Austria.Google Scholar
  14. Pinter, J. (1992), Convergence qualification of adaptive partitioning algorithms in global optimization, Mathematical Programming 56: 343-360.Google Scholar
  15. Schoen, F. (1989), A wide class of test functions for global optimization, Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 51-60.Google Scholar
  16. Solis, F. J. and Wets, R. J-B. (1981), Minimization by random search techniques, Mathematics of Operations Research 6: 19-30.Google Scholar
  17. Törn, A., Ali, M. M. and Viitanen, S. (1999), Stochastic global optimization: Problem classes and solution techniques, Journal of Global Optimization 14: 437-447.Google Scholar
  18. Törn, A. and Viitanen, S. (1994), Topographical global optimization using pre-sampled points, Journal of Global Optimization 5: 267-276.Google Scholar
  19. Törn, A. and Žilinskas, A. (1989), Global Optimization, Springer, Berlin.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Industrial Engineering and Operations Research ProgramNorth Carolina State UniversityRaleighUSACorresponding author: e-mail

Personalised recommendations