Advertisement

Atomic Energy

, Volume 93, Issue 5, pp 872–879 | Cite as

Optimization of the Materials Composition in External Core Catchers for Nuclear Reactors

  • V. N. Mineev
  • F. A. Akopov
  • A. S. Vlasov
  • Yu. A. Zeigarnik
  • O. M. Traktuev
Article

Abstract

Existing schemes of core melt retention apparatus for water-cooled water-moderated nuclear reactors are analyzed. In-shaft variants of melt catchers at nuclear power plants with VVÉR-1000 reactors are proposed. It is shown that TiO2- and Nd2O3-based materials increase the operational reliability of the retention apparatus by modifying the processes occurring in the melt and by preserving the integrity of refractory coatings consisting of zirconium dioxide. TiO2-based material not only decreases the effect of the melt on the refractory but also confines some fission products in geologically similar matrices which are synthesized as the melt cools.

Keywords

TiO2 Dioxide Zirconium Power Plant Nuclear Power Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. I. Repin, V. G. Fedorov, V. I. Prudnikov, et al., “Apparatus for preventing penetration of nuclear reactor core melt into soil,” Russian Federation Patent No. 2119200 (1998).Google Scholar
  2. 2.
    M. Fischer, “Main conceptual features of the EPR melt retention concept,” in: Proceedings of the OECD Workshop on Ex-Vessel Debris Coolability, Karlsruhe, Germany, November 15–18, 1999, pp. 508–517.Google Scholar
  3. 3.
    A. S. Sidorov, G. E. Nosenko, V. S. Granovskii, et al., “System for protecting the shell of a water-moderated water-cooled type reactor,” Russian Federation Patent 2122246 (1998).Google Scholar
  4. 4.
    G. Fieg, M. Moschke, and H. Werle, “Studies for staggered pans core catcher,” Nucl. Tech., 111, 331–340 (1995).Google Scholar
  5. 5.
    I. V. Kukhtevich, V. V. Bezlepkin, V. B. Khabenskii, et al., “Concept for core melt retention at the ex-vessel stage of an unanticipated accident at a nuclear power plant with VVÉR-1000 reactor,” Teploénerget., No. 9, 2–7 (2001).Google Scholar
  6. 6.
    V. N. Mineev, F. A. Akopov, A. A. Akopyan, et al., “Interaction of oxide melt with zirconium-dioxide refractories in an external catcher,” At. Énerg., 90, No. 6, 460–466 (2001).Google Scholar
  7. 7.
    V. N. Mineev, F. A. Akopov, A. A. Akopyan, et al., “Interaction of metallic melt with zirconium dioxide refractories in an external catcher,” At. Énerg., 91, No. 1, 27–35.Google Scholar
  8. 8.
    F. A. Akopov, A. S. Vlasov, L. A. Dombrovskii, et al., “Questions concerning the thermal state of an external core catcher and choosing the optimal catcher structure,” Inzh.-Fiz. Zh., 75, No. 1, 3–8 (2002).Google Scholar
  9. 9.
    A. S. Sidorov, A. B. Nedorezov, M. F. Rogov, et al, “Melt retention system at the Tian Wan nuclear power plant,” Teploénerget., No. 9, 8–13 (2001).Google Scholar
  10. 10.
    L. Barleon, S. Dorner, O. Goetzmann, et al., “Nuclear reactor core catching apparatus,” US Patent 4073682 (1978).Google Scholar
  11. 11.
    D. Bittermann, M. Fischer, and H. Alsmeyer, “Device for collecting and cooling a melt,” Patent WO00/31746, Germany (2000).Google Scholar
  12. 12.
    F. A. Akopov, A. A. Akopyan, B. M. Barykin, et al., “Interaction of oxide components of core melt with hafnium-dioxide and zirconium-dioxide ceramic,” At. Énerg., 84, No. 4, 318–322 (1998).Google Scholar
  13. 13.
    F. A. Akopov, A. A. Akopyan, B. M. Barykin, et al., “Interaction of melt components with zirconium-dioxide ceramic,” At. Énerg., 81, No. 5, 468–471 (1996).Google Scholar
  14. 14.
    A. A. Khrulev, O. M. Traktuev, V. N. Mineev, et al., “Core melt catcher of a nuclear reactor,” Patent No. 2169953, Russian Federation (2001).Google Scholar
  15. 15.
    M. Nie, “Application of sacrificial concrete for retention and conditioning of molten corium in EPR melt retention concept,” in: Proceedings of OECD Workshop on Ex-Vessel Degree Coolability, Karlsruhe, November 15–18, 1999, pp. 527–534.Google Scholar
  16. 16.
    M. Dalle, S. Donner, and G. Schumacher, “Preliminary design of barax internal core-catcher for a gas cooled fast reactor,” in: Gesellschaft für Kernforschung GmbH, Karlsruhe, Vol. 33 (1944).Google Scholar
  17. 17.
    A. Ringwood, Safe Disposal of High Level Reactor Wastes: A New Strategy, ANU Press, Canberra (1978).Google Scholar
  18. 18.
    V. N. Mineev, O. M. Traktyev, F. A. Akopov, et al., “Core melt catcher of a nuclear reactor,” Russian Federation Patent 2187852 (2002).Google Scholar
  19. 19.
    F. A. Akopov, A. A. Akopyan, V. M. Barikin, et al., “Sacraficial layer materials complex usage for immobilization of high level nuclear wastes,” in: Proceedings of OECD Workshop on Ex-Vessel Degree Coolability, Karlsruhe, November 15–18, 1999, pp. 557–566.Google Scholar
  20. 20.
    É. M. Glagovskii, A. V. Kuprin, L. N. Pelevin, et al., “Immobilization of high level wastes in stable mineral-like materials under the conditions of self-propagating high-temperature synthesis,” At. Énerg., 87, No. 1, 57–61 (1999).Google Scholar
  21. 21.
    F. A. Akopov, A. A. Akopyan, B. M. Barykin, et al., “Behavior of plasma-spray zirconium-dioxide ceramic under thermochemical action of core melt components,” At. Énerg., 81, No. 2, 115–119 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. N. Mineev
    • 1
  • F. A. Akopov
    • 1
  • A. S. Vlasov
    • 1
  • Yu. A. Zeigarnik
    • 1
  • O. M. Traktuev
    • 2
  1. 1.OIVT, Russian Academy of SciencesRussia
  2. 2.Russian Science Center Kurchatov InstituteRussia

Personalised recommendations