Neurochemical Research

, Volume 23, Issue 5, pp 709–718

In Vitro Reconstitution of Neurotransmitter Release

  • Yves Dunant
  • Maurice Israël


The vesicular hypothesis has stimulated fruitful investigations on many secreting systems. In the case of rapid synaptic transmission, however, the hypothesis has been found difficult to reconcile with a number of well established observations. Brief impulses of transmitter molecules (quanta) are emitted from nerve terminals at the arrival of an action potential by a mechanism which is under the control of multiple regulations. It is therefore not surprising that quantal release could be disrupted by experimental manipulation of a variety of cellular processes, such as a) transmitter uptake, synthesis, or transport, b) energy supply, c) calcium entry, sequestration and extrusion, d) exo- or endocytosis, e) expression of vesicular and plasmalemmal proteins, f) modulatory systems and second messengers, g) cytoskeleton integrity, etc. Hence, the approaches by “ablation strategy” do not provide unequivocal information on the final step of the release process since there are so many ways to stop the release. We propose an alternate approach: the “reconstitution strategy”. To this end, we developed several preparations for determining the minimal system supporting Ca2+-dependent transmitter release. Release was reconstituted in proteoliposomes, Xenopus oocytes and transfected cell lines. Using these systems, it appears that a presynaptic plasmalemmal proteolipid, that we called mediatophore should be considered as a key molecule for the generation of transmitter quanta in natural synapses.

Quantal transmitter release acetylcholine mediatophore proteoliposomes Xenopus oocytes synaptic vesicles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Del Castillo, J., and B. Katz. 1957. La base “quantale” de la transmission neuromusculaire. In Microphysiologie comparée des éléments excitables. Paris CNRS, editor. 245–258.Google Scholar
  2. 2.
    Israël, M., J. Gautron, and B. Lesbats. 1968. Isolement des vésicules synaptiques de l'organe électrique de la Torpille et localisation de l'acétylcholine à leur niveau. C.R. Acad. Sci. Paris 266:273–275.Google Scholar
  3. 3.
    Israël, M., J. Gautron, and B. Lesbats. 1970. Fractionnement de l'organe électrique de la Torpille: localisation subcellulaire de l'acétylcholine. J. Neurochem. 17:1441–1450.Google Scholar
  4. 4.
    Heuser, J. E., T. S. Reese, M. J. Dennis, Y. Jan, L. Jan, and L. Evans. 1979. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell. Biol. 81:275–300.Google Scholar
  5. 5.
    Torri-Tarelli, F., F. Grohovaz, R. Fesce, and B. Ceccarelli. 1985. Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine. J. Cell. Biol. 101:1386–1399.Google Scholar
  6. 6.
    Schiavo, G., F. Benfenati, B. Poulain, O. Rossetto, P. Polverino de Laureto, B. R. DasGupta, and C. Montecucco. 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835.Google Scholar
  7. 7.
    Blasi, J., E. R. Chapman, E. Link, T. Binz, S. Yamasaki, P. De Camilli, T. C. Südhof, H. Nieman, and R. Jahn. 1993. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP 25. Nature 365:160–163.Google Scholar
  8. 8.
    Kuffler, S. W., and D. Yoshikami. 1975. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. Lond. 251:465–482.Google Scholar
  9. 9.
    Dunant, Y., and D. Muller. 1986. Quantal release of acetylcholine evoked by focal depolarization at the Torpedo nerve-electroplaque junction. J. Physiol. Lond. 379:461–478.Google Scholar
  10. 10.
    Dunant, Y., and M. Israël. 1993. Ultrastructure and biophysics of acetylcholine release: central role of the mediatophore. J. Physiol. Paris 87:179–192.Google Scholar
  11. 11.
    Ceccarelli, B., and W. P. Hurlbut. 1980. Vesicle hypothesis of the release of quanta of acetylcholine. Physiol. Rev. 60:396–441.Google Scholar
  12. 12.
    Alvarez de Toledo, G., R. Fernandez Chacon, and J. M. Fernandez. 1993. Release of secretory products during transient vesicle fusion. Nature 363:554–558.Google Scholar
  13. 13.
    Neher, E. 1993. Secretion without full fusion. Nature 363:497–498.Google Scholar
  14. 14.
    Lindau, M., and W. Almers. 1997. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell. Biol. 7:509–517.Google Scholar
  15. 15.
    Rahamimoff, R., and J. M. Fernandez. 1997. Pre-and postfusion regulation of transmitter release. Neuron 18:17–27.Google Scholar
  16. 16.
    Muller, D., L. M. Garcia-Segura, A. Parducz, and Y. Dunant. 1987. Brief occurrence of a population of large intramembrane particles in the presynaptic membrane during transmission of a nerve impulse. Proc. Natl. Acad. Sci. (USA) 84:590–594.Google Scholar
  17. 17.
    Parducz, A., F. Loctin, E. Babel-Guérin, and Y. Dunant. 1994. Exo-endocycytotic images following tetanic stimulation at a cholinergic synapse. A role in calcium extrusion? Neuroscience 62:93–103.Google Scholar
  18. 18.
    Torri Tarelli, F., M. Bossi, R. Fesce, P. Greengard, and F. Valtorta. 1992. Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Neuron 9:1143–1153.Google Scholar
  19. 19.
    Heuser, J. E., and T. S. Reese. 1981. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell. Biol. 88:564–580.Google Scholar
  20. 20.
    Garcia-Segura, L. M., D. Muller, and Y. Dunant. 1986. Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve-electroplaque junction. Neuroscience 19:63–79.Google Scholar
  21. 21.
    Betz, W. J., and G. S. Bewick. 1993. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J. Physiol. Lond. 460:287–309.Google Scholar
  22. 22.
    Henkel, A. W., and W. J. Betz. 1995. Staurosporine blocks evoked release of FM1–43 but not acetylcholine from frog motor terminals. J. Neurosc. 15:8246–8258.Google Scholar
  23. 23.
    Parducz, A., P. Corrèges, P. Sors, and Y. Dunant. 1997. Zinc blocks acetylcholine release but not vesicle fusion at the Torpedo nerve-electroplate junction. Eur. J. Neurosci. 9:732–738.Google Scholar
  24. 24.
    Israël, M., Y. Dunant, and R. Manaranche. 1979. The present status of the vesicular hypothesis. Prog. Neurobiol. 13:237–275.Google Scholar
  25. 25.
    Tauc, L. 1982. Non-vesicular release of neurotransmitter. Physiol. Rev. 62:857–893.Google Scholar
  26. 26.
    Dunant, Y. 1986. On the mechanism of acetylcholine release. Prog. Neurobiol. 26:55–92.Google Scholar
  27. 27.
    Dunant, Y., and M. Israël. 1985. The release of acetylcholine. Scientific American 252:58–66.Google Scholar
  28. 28.
    De Robertis, E., and A. V. Ferreira. 1957. Submicroscopic changes of the nerve endings in the adrenal medulla after stimulation of the splanchnic nerve. J. Biophys. Biochem. Cytol. 3:611–614.Google Scholar
  29. 29.
    Nicolescu, P., M. Dolivo, C. Rouiller, and C. Foroglou-Kerameus. 1966. The effect of deprivation of glucose on the ultrastructure and function of the superior cervical ganglion of the rat in vitro. J. Cell Biol. 29:267–285.Google Scholar
  30. 30.
    Longenecker, H. E., W. P. Hurlbut, A. Mauro, and A. W. Clark. 1970. Effects of black widow spider venom on the frog neuromuscular junction. Nature 225:702–703.Google Scholar
  31. 31.
    Colasante, C., F. A. Meunier, A. S. Kreger, and J. Molgo. 1996. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynillysin, a protein toxin isolated from stone fish (Synanceia trachynis) venom. Eur. J. Neurosci. 8:2149–2156.Google Scholar
  32. 32.
    Dunant, Y., F. Loctin, J. Marsal, D. Muller, A. Parducz, and X. Rabasseda. 1988. Energy metabolism and quantal acetylcholine release. Effects of botulinum toxin, fluorodinitrobenzene and diamide in the Torpedo electric organ. J. Neurochem. 50:431–439.Google Scholar
  33. 33.
    Kriebel, M. E., F. Llados, and D. R. Matteson. 1976. Spontaneous subminiature end-plate potentials in mouse diaphragm muscle: evidence for synchronous release. J. Physiol. Lond. 262:553–581.Google Scholar
  34. 34.
    Turkanis, S. A. 1973. Some effects of vinblastine and colchicine on neuromuscular transmission. Brain Res. 54:324–329.Google Scholar
  35. 35.
    Mochida, S. 1995. Role of myosin in neurotransmitter release: functional studies at synapses formed in culture. J. Physiol. Paris. 89:83–94.Google Scholar
  36. 36.
    Elmqvist, D., and D. M. J. Quastel. 1965. Presynaptic action of hemicholinium at the neuromuscular junction. J. Physiol. Lond. 177:463–482.Google Scholar
  37. 37.
    Birks, R. I., and F. C. MacIntosh. 1961. Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39:787–827.Google Scholar
  38. 38.
    MacIntosh, F. C., and B. Collier. 1976. Neurochemistry of cholinergic terminals. In Handbook of Experimental Pharmacology. E. Zaimis, editor. Springer Verlag, Berlin. 99–228.Google Scholar
  39. 39.
    Tucek, S. 1978. Acetylcholine synthesis in neurons. S. Tucek, editor. 1–279.Google Scholar
  40. 40.
    Brittain, R. T., G. P. Levy, and M. B. Tyers. 1997. The neuromuscular blocking action of 2-(4-phenyl-piperidino)cyclohexanol (AH5 183). Eur. J. Pharmacol. 8:93–99.Google Scholar
  41. 41.
    Katz, B., and R. B. Miledi. 1969. Tetrodotoxin-resistant electric activity in presynaptic terminals. J. Physiol. Lond. 203:459–487.Google Scholar
  42. 42.
    Molgo, J., M. Lemeignan, and P. Lechat. 1977. Effects of 4-aminopyridine at the frog neuromuscular junction. J. Pharmacol. exp. Ther. 203:653–663.Google Scholar
  43. 43.
    Muller, D. 1986. Potentiation by 4-aminopyridine of quantal acetylcholine release at the Torpedo nerve electroplaque junction. J. Physiol. Lond. 379:479–493.Google Scholar
  44. 44.
    Robitaille, R., and M. P. Charlton. 1992. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J. Neurosci. 12:297–305.Google Scholar
  45. 45.
    Harvey, A. M., and F. C. MacIntosh. 1940. Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. Lond. 97:408–416.Google Scholar
  46. 46.
    Katz, B. 1969. The release of neural transmitter substances. University Press: Liverpool 60P.Google Scholar
  47. 47.
    Eshkind, L. G., and R. E. Leube. 1995. Mice lacking synaptophysin reproduce and form typical synaptic vesicles. Cell Tissue Res. 282:423–433.Google Scholar
  48. 48.
    McMahon, H. T., V. Y. Bolshakov, R. Janz, R. E. Hammer, S. A. Siegelbaum, and T. C. Sudhof. 1996. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc. Natl. Acad. Sci. U.S.A. 93:4760–4764.Google Scholar
  49. 49.
    Sweeney, S. T., K. Broadie, J. Keane, H. Niemann, and C. J. O'Kane. 1995. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351.Google Scholar
  50. 50.
    Sollner, T., and J. E. Rothman. 1994. Neurotransmission: harnessing fusion machinery at the synapse. Trends Neurosci. 17:344–348.Google Scholar
  51. 51.
    Harris, A. J., and R. B. Miledi. 1971. The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. Lond. 217:497–515.Google Scholar
  52. 52.
    Thesleff, S., J. Molgo, and H. Lundh. 1983. Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous transmitter release at the rat neuromuscular junction. Brain Res. 264:89–97.Google Scholar
  53. 53.
    Gansel, M., R. Penner, and F. Dreyer. 1987. Distinct sites of action of clostridial neurotoxins revealed by double-poisoning of mouse motor nerve terminals. Pflügers Arch. 409:533–539.Google Scholar
  54. 54.
    Molgo, J., J. X. Comella, D. Angaut Petit, M. Pecot Dechavassine, N. Tabti, L. Faille, A. Mallart, and S. Thesleff. 1990. Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J. Physiol. Paris 84:152–166.Google Scholar
  55. 55.
    DiAntonio, A., K. D. Parfitt, and T. L. Schwarz. 1993. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 73:1281–1290.Google Scholar
  56. 56.
    Bommert, K., M. P. Charlton, W. M. DeBello, G. J. Chin, H. Betz, and G. J. Augustine. 1993. Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363:163–165.Google Scholar
  57. 57.
    Nonet, M. L., K. Grundahl, B. J. Meyer, and J. B. Rand. 1993. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73:1291–1305.Google Scholar
  58. 58.
    Littleton, J. T., and H. J. Bellen. 1995. Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca(2+)-dependent manner. Trends. Neurosci. 18:177–183.Google Scholar
  59. 59.
    Broadie, K., A. Prokop, H. J. Bellen, C. J. O'Kane, K. L. Schulze, and S. T. Sweeney. 1995. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15:663–673.Google Scholar
  60. 60.
    Stevens, C. F. 1993. Quantal release of neurotransmitter and long-term potentiation. Neuron 10:55–63.Google Scholar
  61. 61.
    Kriebel, M. E., and C. E. Gross. 1974. Multimodal distribution of frog miniature endplate potentials in adult, denervated and tadpole leg muscle. J. Gen. Physiol. 64:85–103.Google Scholar
  62. 62.
    Muller, D., and Y. Dunant. 1987. Spontaneous quantal and subquantal transmitter release at the Torpedo nerve-electroplaque junction. Neuroscience 20:911–921.Google Scholar
  63. 63.
    Girod, R., P. Corrèges, J. Jacquet, and Y. Dunant. 1993. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo. J. Physiol. Lond. 471:129–157.Google Scholar
  64. 64.
    Morel, N., M. Israël, R. Manaranche, and P. Mastour-Frachon. 1977. Isolation of pure cholinergic nerve endings from Torpedo electric organ. Evaluation of their metabolic properties. J. Cell Biol. 75:43–55.Google Scholar
  65. 65.
    Girod, R., L. Eder-Colli, J. Medilanski, Y. Dunant, N. Tabti, and M. M. Poo. 1992. Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated from the Torpedo electric organ. J. Physiol. Lond. 450:325–340.Google Scholar
  66. 66.
    Israël, M., B. Lesbats, and R. Manaranche. 1981. ACh release from osmotically shocked synaptosomes refilled with transmitter. Nature 294:474–475.Google Scholar
  67. 67.
    Israël, M., B. Lesbats, N. Morel, R. Manaranche, and G. Le Gal la Salle. 1988. Is the acetylcholine releasing protein mediatophore present in rat brain? FEBS Lett. 233:421–426.Google Scholar
  68. 68.
    Meyer, E. M., and J. R. Cooper. 1983. High affinity choline uptake and calcium-dependent acetylcholine release in proteoliposomes derived from rat cortical synaptosomes. J. Neurosci. 3:987–994.Google Scholar
  69. 69.
    Israël, M., B. Lesbats, M. Sbia, and N. Morel. 1990. Acetylcholine translocating protein: mediatophore at rat neuromuscular synapses. J. Neurochem. 55:1758–1762.Google Scholar
  70. 70.
    Israël, M., B. Lesbats, N. Morel, R. Manaranche, T. Gulik-Krzywicki, and J. Dedieu. 1984. Reconstitution of a functional synaptosomal membrane possessing the protein constituents involved in acetylcholine translocation. Proc. Natl. Acad. Sci. USA. 81:277–281.Google Scholar
  71. 71.
    Israël, M., N. Morel, B. Lesbats, S. Birman, and R. Manaranche. 1986. Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc. Natl. Acad. Sci. USA 83:9226–9230.Google Scholar
  72. 72.
    Birman, S., M. Israël, B. Lesbats, and N. Morel. 1986. Solubilization and partial purification of a presynaptic membrane protein ensuring calcium-dependent acetylcholine release from proteoliposomes. J. Neurochem. 47:433–444.Google Scholar
  73. 73.
    Birman, S., F. M. Meunier, B. Lesbats, J. P. LeCaer, J. Rossier, and M. Israël. 1990. A 15 kD proteolipid found in mediatophore preparations from Torpedo presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Lett. 261:303–306.Google Scholar
  74. 74.
    Nelson, N. 1992. Organellar proton-ATPases. Curr. Opin. Cell. Biol. 4:654–660.Google Scholar
  75. 75.
    Finbow, M. E., J. D. Pitts, D. J. Goldstein, R. Schlegel, and B. C. Findlay. 1991. The E5 oncoprotein target: A 16-kDa channel-forming protein with diverse functions. Molec. Carcinog. 4:441–444.Google Scholar
  76. 76.
    Finbow, M. E., M. Harrison, and P. Jones. 1995. Ductin—a proton pump component, a gap junction channel and a neurotransmitter release channel. Bioessays. 17:247–255.Google Scholar
  77. 77.
    Brochier, G., M. Israël, and B. Lesbats. 1993. Immunolabelling of the presynaptic membrane of Torpedo electric organ nerve terminals with an antiserum towards the acetylcholine releasing protein mediatophore. Biol. Cell 78:145–154.Google Scholar
  78. 78.
    Israël, M., F. M. Meunier, N. Morel, and B. Lesbats. 1987. Calcium-induced desensitization of acetylcholine release from synaptosomes or proteoliposomes equipped with mediatophore, a presynaptic membrane protein. J. Neurochem. 49:975–982.Google Scholar
  79. 79.
    Cavalli, A., L. Eder-Colli, Y. Dunant, F. Loctin, and N. Morel. 1991. Release of acetylcholine from Xenopus oocytes injected with nRNAs from cholinergic neurons. EMBO J. 10:1671–1675.Google Scholar
  80. 80.
    Morot-Gaudry-Talarmain, Y., M.-F. Diebler, M. Robba, J.-C. Lancelot, B. Lesbats, and M. Israël. 1989. Effect of cetiedil analogs on acetylcholine and choline fluxes in synaptosomes and vesicles. Eur. J. Pharmacol. 166:427–433.Google Scholar
  81. 81.
    Dunant, Y., F. Loctin, J.-P. Vallée, A. Parducz, B. Lesbats, and M. Israël. 1996. Activation and desensitization of acetylcholine release by zinc in Torpedo nerve terminals. Pflügers Arch. 432:853–858.Google Scholar
  82. 82.
    Brochier, G., T. Gulik-Krzywicki, B. Lesbats, J. Dedieu, and M. Israël. 1992. Calcium-induced acetylcholine release and intramembrane particle occurrence in proteoliposomes equipped with mediatophore. Biol. Cell 74:225–230.Google Scholar
  83. 83.
    Israël, M., R. Manaranche, N. Morel, J. Dedieu, T. Gulik-Krzywicki, and B. Lesbats. 1981. Redistribution of intramembrane particles related to acetylcholine release by cholinergic synaptosomes. J. Ultrastruct. Res. 75:162–178.Google Scholar
  84. 84.
    Gundersen, C. B., D. J. Jenden, and R. B. Miledi. 1985. Choline acetyltransferase and acetylcholine in Xenopus oocytes injected with mRNA from the electric lobe of Torpedo. Proc. Natl. Acad. Sci. (USA) 82:608–611.Google Scholar
  85. 85.
    Gundersen, C. B., R. B. Miledi, and I. Parker. 1984. Slowly inactivating potassium channels induced in Xenopus oocytes by messenger ribonucleic acid from Torpedo brain. J. Physiol. Lond. 353:231–248.Google Scholar
  86. 86.
    Cavalli, A., Y. Dunant, C. Leroy, F. M. Meunier, N. Morel, and M. Israël. 1993. Antisense probes against mediatophore block transmitter release in oocytes primed with neuronal mRNAs. Eur. J. Neurosci. 5:1539–1544.Google Scholar
  87. 87.
    Alder, J., B. Lu, F. Valtorta, P. Greengard, and M. M. Poo. 1992. Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: Requirement for synaptophysin. Science 257:657–661.Google Scholar
  88. 88.
    Leroy, C. and F. M. Meunier. 1995. Differential targeting to the plasma membrane of the Torpedo 15-kDa proteolipid expressed in oocytes. J. Neurochem. 65:1789–1797.Google Scholar
  89. 89.
    Evers, J., M. Laser, Y. Sun, Z. Xie, and M. M. Poo. 1989. Studies of nerve-muscle interactions in Xenopus cell culture: Analysis of early synaptic currents. J. Neurosci. 9:1523–1539.Google Scholar
  90. 90.
    Falk-Vairant, J., Y. Dunant, and M. Israël. 1994. Quantal acetylcholine release in reconstituted systems. J. Neurochem. 63:S90.Google Scholar
  91. 91.
    Falk-Vairant, J., P. Corrèges, L. Eder-Colli, N. Salem, E. Roulet, A. Bloc, F. Meunier, B. Lesbats, F. Loctin, M. Synguelakis, M. Israël, and Y. Dunant. 1996. Quantal acetylcholine release induced by mediatophore transfection. Proc. Natl. Acad. Sci. USA 93:5203–5207.Google Scholar
  92. 92.
    Israël, M., B. Lesbats, M. Synguelakis, and A. Joliot. 1994. Acetylcholine accumulation and release by hybrid NG108–15, glioma and neuroblastoma cells—Role of a 16 kDa membrane protein in release. Neurochem. Int. 25:103–109.Google Scholar
  93. 93.
    Falk-Vairant, J., M. Israël, J. Bruner, J. Stinnakre, F. M. Meunier, P. Gaultier, F. A. Meunier, B. Lesbats, M. Synguelakis, P. Corrèges, and Y. Dunant. 1996. Evoked transmitter release from fibroblasts loaded with acetylcholine, enhancement by cAMP. Neuroscience 75:353–360.Google Scholar
  94. 94.
    Varoqui, H., M. Diebler, F. Meunier, J. B. Rand, T. B. Usdin, T. I. Bonner, L. E. Eiden, and J. D. Erickson. 1994. Cloning and expression of the vesamicol binding protein from the marine ray Torpedo. Homology with the putative acetylcholine transporter UNC-17 from Caenorhabditis elegans. FEBS Lett. 342:97–102.Google Scholar
  95. 95.
    Zhong, Z. G., H. Misawa, S. Furuya, Y. Kimura, M. Noda, S. Yokoyama, and H. Higashida. 1995. Overexpression of choline acetyltransferase reconstitutes discrete acetylcholine release in some but not all synapse formation-defective neuroblastoma cells. J. Physiol. Paris 89:137–145.Google Scholar
  96. 96.
    Erickson, J. D., H. Varoqui, M. K. Schafer, W. Modi, M. F. Diebler, E. Weihe, J. Rand, L. E. Eiden, T. I. Bonner, and T. B. Usdin. 1994. Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J. Biol. Chem. 269:21929–21932.Google Scholar
  97. 97.
    Berrard, S., H. Varoqui, R. Cervini, M. Israël, J. Mallet, and M.-F. Diebler. 1995. Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. J. Neurochem. 65:939–942.Google Scholar
  98. 98.
    Falk-Vairant, J., P. Corrèges, L. Eder-Colli, N. Salem, F. Meunier, B. Lesbats, F. Loctin, M. Synguelakis, M. Israël, and Y. Dunant. 1996. Evoked acetylcholine release expressed by transfection of mediatophore cDNA. J. Neurochem. 66:1322–1325.Google Scholar
  99. 99.
    Falk-Vairant, J., F. M. Meunier, B. Lesbats, P. Corrèges, L. Eder-Colli, N. Salem, M. Synguelakis, Y. Dunant, and M. Israël. 1996. Cell lines expressing an acetylcholine release mechanism, correction of a release-defficient cell by mediatophore transfection. J. Neurosc. Res. 45:195–201.Google Scholar
  100. 100.
    Bloc, A., E. Roulet, F. Loctin, and Y. Dunant. 1997. Acetylcholine release from mouse neuroblastoma cells co-transfected with mediatophore and choline acetyltransferase cDNAs. NATO ASI Series 100:175–182.Google Scholar
  101. 101.
    Galli, T., P. S. McPherson, and P. De Camilli. 1996. The Vo sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive, complex. J. Biol. Chem. 271:2193–2198.Google Scholar
  102. 102.
    Shiff, G., Synguelakis, M. and Morel, N. 1996. Association of syntaxin with SNAP 25 and VAMP (synaptobrevin) in Torpedo synaptosomes. Neurochem. Int. 29:659–667.Google Scholar
  103. 103.
    Israël, M., and B. Lesbats. 1981. Continuous determination by a chemiluminescent method of acetylcholine release and compart-mentation in Torpedo electric organ synaptosomes. J. Neurochem. 37:1475–1483.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Yves Dunant
    • 1
  • Maurice Israël
    • 2
  1. 1.Département de PharmacologieUniversité de Genève, Centre Médical UniversitaireGenève-Switzerland
  2. 2.Laboratoire de Neurobiologie cellulaire et moléculaire, C.N.R.SGif-sur-YvetteFrance

Personalised recommendations