Journal of Atmospheric Chemistry

, Volume 44, Issue 2, pp 171–190 | Cite as

A Coupled Hydrophobic-Hydrophilic Model for Predicting Secondary Organic Aerosol Formation

  • Robert J. Griffin
  • Khoi Nguyen
  • Donald Dabdub
  • John H. Seinfeld
Article

Abstract

The formation of secondary organic aerosol (SOA) results from the absorption of gas-phase organic oxidation products by airborne aerosol. Historically, modeling the formation of SOA has relied on relatively crude estimates of the capability of given parent hydrocarbons to form SOA. In more recent work, surrogate organic oxidation products have been separated into two groups, hydrophobic and hydrophilic, depending on whether the product is more likely to dissolve into an organic or an aqueous phase, respectively. The surrogates are then allowed to partition only via the dominant mechanism, governed by molecular properties of the surrogate molecules. The distinction between hydrophobic and hydrophilic is based on structural and physical characteristics of the compound. In general, secondary oxidation products, because of low vapor pressures and high polarities, express affinity for both the organic and aqueous aerosol phases. A fully coupled hydrophobic-hydrophilic organic gas-particle partitioning model is presented here. The model concurrently achieves mass conservation, equilibrium between the gas phase and the organic aerosol phase, equilibrium between the gas phase and the aqueous aerosol phase, and equilibrium between molecular and ionic forms of the partitioning species in the aqueous phase. Simulations have been performed using both a zero-dimensional model and the California Institute of Technology three-dimensional atmospheric chemical transport model. Simultaneous partitioning of species by both mechanisms typically leads to a shift in the distribution of products to the organic aerosol phase and an increase in the total amount of SOA predicted as compared to previous work in which partitioning is assumed to occur independently to organic and aqueous phases.

absorption dissolution equilibrium model organic aerosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson-Sköld, Y. and Simpson, D., 2001: Secondary organic aerosol formation in northern Europe: A model study, J. Geophys. Res. 106, 7357-7374.Google Scholar
  2. Atkinson, R., 1997: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data 26, 215-290.Google Scholar
  3. Aumont, B., Madronich, S., Bey, I., and Tyndall, G. S., 2000: Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modeling approach, J. Atmos. Chem. 35, 59-75.Google Scholar
  4. Baues, H. J., 1989: Algebraic Homotopy, Cambridge University Press, New York.Google Scholar
  5. Clegg, S. L., Seinfeld, J. H., and Brimblecombe, P., 2001: Thermodynamic modeling of aqueous aerosols containing electrolytes and dissolved organic compounds, J. Aerosol Sci. 32, 713-738.Google Scholar
  6. Cocker III, D. R., Flagan, R. C., and Seinfeld, J. H., 2001: State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environ. Sci. Technol. 35, 2594-2601.Google Scholar
  7. Fredenslund, A., Gmehling, J., and Rasmussen, P., 1977: Vapor-Liquid Equilibrium Using UNIFAC, Elsevier, Amsterdam.Google Scholar
  8. Griffin, R. J., Cocker III, D. R., Flagan, R. C., and Seinfeld, J. H., 1999: Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys Res. 104, 3555-3567.Google Scholar
  9. Griffin, R. J., Dabdub, D., Kleeman, M. J., Fraser, M. P., Cass, G. R., and Seinfeld, J. H., 2002a: Secondary organic aerosol: III. Urban/regional scale model of size-and composition-resolved aerosols, J. Geophys. Res., in press.Google Scholar
  10. Griffin, R. J., Dabdub, D., and Seinfeld, J. H., 2002b: Secondary organic aerosol: I. Atmospheric chemical mechanism for production of molecular constituents, J. Geophys Res., in press.Google Scholar
  11. Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R.C., and Seinfeld, J. H., 1997: Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem. 26, 189-222.Google Scholar
  12. Jacobson, M. Z., 1997: Development and application of a new air pollution modeling system 3. Aerosol-phase simulations, Atmos. Environ. 31, 587-608.Google Scholar
  13. Kamens, R., Jang, M., Chien, C.-J., and Leach, K., 1999: Aerosol formation from the reaction of a-pinene and ozone using a gas phase kinetics-aerosol partitioning module, Environ. Sci. Technol. 33, 1430-1438.Google Scholar
  14. Kicic, I., Femeglia, M., and Rasmussen, P., 1991: UNIFAC prediction of vapor-liquid equilibria in mixed solvent-salt systems, Chem. Eng. Sci. 47, 2775-2780.Google Scholar
  15. Liang, C. K., Pankow, J. F., Odum, J. R., and Seinfeld, J. H., 1997: Gas/particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols, Environ. Sci. Technol. 31, 3086-3092.Google Scholar
  16. Macedo, E. A., Skovborg, P., and Rasmussen, P., 1990: UNIFAC prediction of vapor-liquid equilibria in mixed solvent-salt systems, Chem. Eng. Sci. 46, 2775-2780.Google Scholar
  17. Mader, B. T. and Pankow, J. F., 1999: Controlled field experiments: A unique method to study the fundamental processes controlling the gas-particle partitioning behavior of semi-volatile organic compounds, Abs. Pap. Amer. Chem. Soc. 217, 63.Google Scholar
  18. Meng Z., Dabdub, D., and Seinfeld, J. H., 1998: Size-resolved and chemically resolved model of atmospheric aerosol dynamics, J. Geophys. Res. 103, 3419-3435.Google Scholar
  19. Meng, Z., Seinfeld, J. H., Saxena, P., and Kim, Y. P., 1995: Atmospheric gas-aerosol equilibrium 4. Thermodynamics of carbonates, Aerosol Sci. Technol. 23, 131-154.Google Scholar
  20. Murphy, D. M., Thomson, D. S., and Mahoney, T. M. J., 1998: In situmeasurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers, Science 282, 1664-1669.Google Scholar
  21. Myrdal, P. B. and Yalkowsky, S. H., 1997: Estimating pure component vapor pressures of complex organic molecules, Ind. Eng. Chem. Res. 36, 2494-2499.Google Scholar
  22. Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H., 1996: Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol. 30, 2580-2585.Google Scholar
  23. Odum, J. R., Jungkamp, T. P. W., Griffin, R. J., Flagan, R. C., and Seinfeld, J.H., 1997: The atmospheric aerosol-forming potential of whole gasoline vapor, Science 276, 96-99.Google Scholar
  24. Pandis, S. N., Harley, R. H., Cass, G. R., and Seinfeld, J. H., 1992: Secondary organic aerosol formation and transport, Atmos. Environ. 26A, 2269-2282.Google Scholar
  25. Pankow, J. F., 1994: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ. 28, 189-193.Google Scholar
  26. Pankow, J. F., Seinfeld, J. H., Asher, W. E., and Erdakos, G. B., 2001: Modeling the formation of secondary organic aerosol: 1. The application of theoretical principles to measurements obtained in the a-pinene-, ß-pinene-, sabinene-, Δ3-carene-, and cyclohexene-ozone systems, Environ. Sci. Technol. 35, 1164-1172.Google Scholar
  27. Pun, B. K., Griffin, R. J., Seigneur, C., and Seinfeld, J. H., 2002: Secondary organic aerosol: II. Thermodynamic model for gas/particle partitioning of molecular constituents, J. Geophys. Res., in press.Google Scholar
  28. Rogge, W. F., Mazurek, M. A., Hildemann, L. M., and Cass, G. R., 1993: Quantification of urban organic aerosols at a molecular level: Identification, abundance, and seasonal variation, Atmos. Environ. 27, 1309-1330.Google Scholar
  29. Saxena, P. and Hildemann, L. M., 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57-109.Google Scholar
  30. Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T., 1999a: Measurement of emissions from air pollution sources 1. C1 through C29 organic compounds from meat charbroiling, Environ. Sci. Technol. 33, 1566-1577.Google Scholar
  31. Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T., 1999b: Measurement of emissions from air pollution sources 2. C1 through C30 organic compounds from medium duty diesel trucks, Environ. Sci. Technol. 33, 1578-1587.Google Scholar
  32. Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T., 2001: Measurement of emissions from air pollution sources 3. C1 through C29 organic compounds from fireplace combustion of wood, Environ. Sci. Technol. 35, 1716-1728.Google Scholar
  33. Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1996: Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ. 30, 3837-3855.Google Scholar
  34. Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., 1993: Environmental Organic Chemistry, Wiley-Interscience, New York.Google Scholar
  35. Seinfeld, J. H., Erdakos, G. B., Asher, W. E., and Pankow, J. F., 2001: Modeling the formation of secondary organic aerosol: 2. The predicted effects of relative humidity on aerosol formation in the a-pinene-, ß-pinene-, sabinene-, Δ3-carene-, and cyclohexene-ozone systems, Environ. Sci. Technol. 35, 1806-1817.Google Scholar
  36. Seinfeld, J. H. and Pandis, S. N., 1998: Atmospheric Chemistry and Physics From Air Pollution to Climate Change, Wiley-Interscience, New York.Google Scholar
  37. Sheehan, P. E. and Bowman, F. M., 2001: Estimated effects of temperature on secondary organic aerosol concentrations, Environ. Sci. Technol. 35, 2129-2135.Google Scholar
  38. Smith, J. M. and Van Ness, H. C., 1987: Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, Inc., New York.Google Scholar
  39. Strader, R., Lurmann, F., and Pandis, S. N., 1999: Evaluation of secondary organic aerosol formation in winter, Atmos. Environ. 33, 4849-4863.Google Scholar
  40. Turpin, B. J. and Huntzicker, J. J., 1995: Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS, Atmos. Environ. 29, 3527-3544.Google Scholar
  41. Xiong, J. Q., Zhong, M. H., Fang, C. P., Chen, L. C., and Lippmann, M., 1998: Influence of organic films on the hygroscopicity of ultrafine sulfuric acid aerosol, Environ. Sci. Technol. 32, 3536-3541.Google Scholar
  42. Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M., Clegg, S. L., and Binkowski, F. S., 2000: A comparative review of inorganic aerosol thermodynamic modules: Similarities, differences, and their likely causes, Atmos. Environ. 34, 117-137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Robert J. Griffin
    • 1
  • Khoi Nguyen
    • 2
  • Donald Dabdub
    • 2
  • John H. Seinfeld
    • 3
  1. 1.Department of Civil and Environmental EngineeringDuke UniversityDurhamU.S.A.
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of California at IrvineIrvineU.S.A
  3. 3.Department of Chemical Engineering and Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaU.S.A

Personalised recommendations