Neurochemical Research

, Volume 22, Issue 8, pp 1033–1040

The Endothelin System and Endothelin-Converting Enzyme in the Brain: Molecular and Cellular Studies

Article

Abstract

The biologically active vasoactive peptides, the endothelins (ETs), are generated from inactive intermediates, the big endothelins, by a unique processing event catalysed by the zinc metalloprotease, endothelin converting enzyme (ECE). In this overview we examine the actions of endothelins in the brain, and focus on the structure and cellular locations of ECE. The heterogeneous distribution in the brain of ET-1, ET-2, and ET-3 is discussed in relation to their hemodynamic, mitogenic and proliferative properties as well as their possible roles as neurotransmitters. The cellular and subcellular localization of ECE in neuronal and in glial cells is compared with that of other brain membrane metalloproteases, neutral endopeptidase-24.11 (neprilysin), angiotensin converting enzyme and aminopeptidase N, which all function in neuropeptide processing and metabolism. Unlike these ectoenzymes, ECE exhibits a dual localisation in the cell, being present on the plasma membrane and also, in some instances, being concentrated in a perinuclear region. This differential localization may reflect distinct targeting of different ECE isoforms, ECE-lα, ECE-1β, and ECE-2.

Endothelin endothelin converting enzyme metalloprotease neutral endopeptidase amino-peptidases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, Y., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. 1988. A novel potent, vasoconstrictor peptide produced by vascular endothelial cells. Nature. 332:411–415.Google Scholar
  2. 2.
    Inoue, A., Yanagisawa, M., Kimura, S., Kasuya, Y., Miyauchi, T., Goto, K., and Masaki, T. 1989. The human endothelin family: Three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA. 86: 2863–2867.Google Scholar
  3. 3.
    Warner, T. D., Battisti, B., Doherty, A. M., and Corder, R. 1994. Endothelin receptor antagonists: actions and rationale for their development. Biochem. Pharmacol. 48:625–35.Google Scholar
  4. 4.
    Pollock, D. M., Keith, T. L., and Highsmith, R. F. 1995. Endothelin receptors and calcium signalling. FASEB J. 9:1196–1204.Google Scholar
  5. 5.
    Kloog, Y., Ambar, I., Sokolovsky, M., Kochva, E., Wollberg, Z., and Bdolah, A. 1988. Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science. 242: 268–70.Google Scholar
  6. 6.
    Marsault, R., Vigne, P., and Frelin, C. 1990. The effect of extracellular calcium on the contractile action of endothelin. Biochem. Biophys. Res. Commun. 171:301–305.Google Scholar
  7. 7.
    Kurihara, Y., Kurihara, H., Suzuki, H., Kodama, T., Maemura, K., Nagai, R., Oda, H., Kuwaki, T., Cao, W., Kamada, N., Jishage, K., Ouchi, Y., Azuma, S., Toyoda, Y., Ishikawa, T., Kumada, M., and Yazaki, Y. 1994. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature. 368:703–710.Google Scholar
  8. 8.
    Baynash, A. G., Hosoda, K., Giaid, A., Richardson, J. A., Emoto, N., Hammer, R. E., and Yanagisawa, M. 1994. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 79:1277–1285.Google Scholar
  9. 9.
    Puffenberger, E. G., Hosoda, K., Washington, S. S., Nakao, K., de Wit, D., Yanagisawa, M., and Chakravarti, A. 1994. A missence mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell. 79:1257–1266.Google Scholar
  10. 10.
    Siren, A. L., and Feuerstein, G. 1989. Hemodynamic effect of endothelin after systemic and central nervous system administration in the conscious rat. Neuropeptides. 14:231–236.Google Scholar
  11. 11.
    Kobayashi, H., Hayushi, M., Kobayashi, S., Kabuto, M., Handa, Y., Kawano, H., and Ide. H. 1991. Cerebral vasospasm and vasoconstriction caused by endothelin. Neurosurgery. 28:673–679.Google Scholar
  12. 12.
    MacCumber, M. W., Ross, C. A., and Snyder, S. H. 1990. Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA. 87:2359–2363.Google Scholar
  13. 13.
    Fuxe, K., Tinner, B., Staines, W., Hemsen, A., Hersh, L., and Lundberg, J. M. 1991. Demonstration and nature of endothelin-3-like immunoreactivity in somatostatin and choline acetyltransferase-immunoreactive nerve cells of the neostriatum of the rat. Neurosci. Lett. 123:107–111.Google Scholar
  14. 14.
    Giaid, A., Gibson, S. J., Herrero, M. T., Gentleman, S., Legon, S., Yanagisawa, M., Masaki, T., Ibrahim, N. B. N., Roberts, G. W., Rossi, M. L., and Polak, J. M. 1991. Topographical localisation of endothelin mRNA and peptide immunoreactivity in neurones of the human brain. Histochemistry. 95:303–314.Google Scholar
  15. 15.
    Stanimirovic, D. B., Yamamoto, T., Uematsu, S., and Spatz, M. 1994. Endothelin-1 receptor binding and cellular signal transduction in cultured human brain endothelial cells. J. Neurochem. 62: 592–601.Google Scholar
  16. 16.
    Ehrenreich, H., Kehrl, J. H., Anderson, R. W., Rieckmann, P., Vitkovic, L., Coligan, J. E., and Fauci, A. S. 1991. A vasoactive peptide, endothelin-3 is produced by and specifically binds to primary astrocytes. Brain Res. 538:54–58.Google Scholar
  17. 17.
    Armstead, W. M., Mirro, R., Leffler, C. W., and Busija, D. W. 1989. Influence of endothelin on piglet cerebral microcirculation. Am. J. Physiol. 257:H707–H710.Google Scholar
  18. 18.
    Shubeita, H. E., McDonough, P. M., Harris, A. N., Knowlton, K. U., Glembotski, C. C., Brown, J. H., and Chien, K. R. 1990. Endothelin induction of inositol phospholipid hydrolysis, sarcomare assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J. Biol. Chem. 265:20555–20562.Google Scholar
  19. 19.
    Masaki, T., Kimura, S., Yanagisawa, M., and Goto, K. 1991. Molecular and cellular mechanisms of endothelin regulation. Implications for vascular function. Circulation. 84:1457–1468.Google Scholar
  20. 20.
    Vanhoutte, P. M. 1994. A matter of life and breath. Nature. 368: 693–694.Google Scholar
  21. 21.
    Zhang, M., and Olsson, Y. 1995. Reactions of astrocytes and microglial cells around hematogenous metastases of the human brain. Expression of endothelin-like immunoreactivity in reactive astrocytes and activation of microglial cells. J. Neurol. Sci. 134:26–32.Google Scholar
  22. 22.
    Zhang, W. W., Badonic, T., Hoog, A., Jiang, M. H., Ma, K. C., Nie, X. J., and Olsson, Y. 1994. Astrocytes in Alzheimer's disease express immunoreactivity to the vaso-constrictor endothelin 1. J. Neurol. Sci. 122:90–96.Google Scholar
  23. 23.
    Giaid, A., Gibson, S. J., Ibrahim, N. B. N., Legon, S., Bloom, S. R., Yanagisawa, M., Masaki, T., Varndell, I. M., and Polak, J. M. 1989. Endothelin 1, an endothelin-derived peptide, is expressed in neurons of the human spinal cord and dorsal root ganglia. Proc. Natl. Acad. Sci. USA. 86:7634–7638.Google Scholar
  24. 24.
    Yoshizawa, T., Kimura, S., Kamazawa, I., Uchiyama, Y., Yanagisawa, M., and Masaki, T. 1989. Endothelin localizes in the dorsal horn and acts on the spinal neurones: possible involvement of dihydropyridine-sensitive calcium channels and substance P release. Neurosci. Lett. 102:179–184.Google Scholar
  25. 25.
    Koyama, Y., and Baba, A. 1994. Endothelins are extracellular signals modulating cytoskeletal actin organisation in rat cultured astrocytes. Neuroscience. 61:1007–1016.Google Scholar
  26. 26.
    Laporte, S., Denault, J.-B., D'Orleans-Juste, P., and Leduc, R. 1993. Presence of furin in mRNA in cultured bovine endothelial cells and possible involvement of furin in the processing of the endothelin precursor. J. Cardiovasc. Pharmacol. 22(Suppl. 8), S7–S10.Google Scholar
  27. 27.
    Turner, A. J., and Murphy, L. J. 1996. Molecular pharmacology of endothelin-converting enzymes. Biochem. Pharmacol. 51:91–102.Google Scholar
  28. 28.
    Takahashi, M., Matsushita, Y., Iijima, Y., and Tanzawa, K. 1993. Purification and characterization of endothelin-converting enzyme from rat lung. J. Biol. Chem. 268:21394–21398.Google Scholar
  29. 29.
    Ohnaka, K., Takayanagi, R., Nishikawa, M., Haji, M., and Nawata, H. 1993. Purification and characterization of a phosphoramidon-sensitive endothelin-converting enzyme in porcine aortic endothelium. J. Biol. Chem. 268:26759–26766.Google Scholar
  30. 30.
    Xu, D., Emoto, N., Giaid, A., Slaughter, C., Kaw, S., deWit, D., and Yanagisawa, M. 1994. ECE-1: a membrane-bound metallo-protease that catalyzes the proteolytic activation of big endothelin-1. Cell. 78:473–485.Google Scholar
  31. 31.
    Shimada, K., Takahashi, M., and Tanzawa, K. 1994. Cloning and functional expression of endothelin-converting enzyme from rat endothelial cells. J. Biol. Chem. 269:18275–18278.Google Scholar
  32. 32.
    Schmidt, M., Kroger, B., Jacob, E., Seulberger, H., Subkowski, T., Otter, R., Meyer, T., Schmalzing, G., and Hillen, H. 1994. Molecular characterization of human and bovine endothelin-converting enzyme (ECE-1). FEBS Lett. 356:238–243.Google Scholar
  33. 33.
    Valdenaire, O., Rohrbacher, E., and Mattei, M.-G. 1995. Organisation of the gene encoding the human endothelin-converting enzyme (ECE-1). J. Biol. Chem. 270:29794–29798.Google Scholar
  34. 34.
    Albertin, G., Rossi, G. P., Majone, F., Tiso, N., Mattara, A., Danieli, G. A., Pessina, A. C., and Paku, G. 1996. Fine mapping of the human endothelin-converting enzyme gene by fluorescent in situ hybridisation and radiation hybrids. Biochem. Biophys. Res. Commun. 221:682–687.Google Scholar
  35. 35.
    Shimada, K., Takahashi, M., Ikeda, M., and Tanzawa, K. 1995. Identification and characterisation of two isoforms of an endothelin-converting enzyme-1. FEBS Lett. 371:140–144.Google Scholar
  36. 36.
    Emoto, N., Xie, J., and Yanagisawa, M. 1996. Intracellular and cell surface isoforms of endothelin-converting enzyme-1 generated by tissue specific alternative splicing. Circulation 94:586.Google Scholar
  37. 37.
    Shimada, K., Takahashi, M., Turner, A. J., and Tanzawa, K. 1996. Rat endothelin-converting enzyme-1 forms a dimer through Cys412 with a similar catalytic mechanism and a distinct substrate binding mechanism compared with neutral endopeptidase-24.11. Biochem. J. 315:863–867.Google Scholar
  38. 38.
    Emoto, N., and Yanagisawa, M. 1995. Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J. Biol. Chem. 250:15262–15268.Google Scholar
  39. 39.
    Turner, A. J., and Barnes, K. 1994. Neuropeptidases: candidate enzymes and techniques for study. Biochem. Soc. Trans. 22:122–126.Google Scholar
  40. 40.
    Turner, A. J., and Barnes, K. 1995. in Peptidases and Neuropeptide Processing, vol. 23, pp. 344–362, Academic Press.Google Scholar
  41. 41.
    Roques, B. P., Noble, F., Dauge, V., Fournie-Zaluski, M.-C., and Beaumont, A. 1993. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45:87–146.Google Scholar
  42. 42.
    Turner, A. J., Hooper, N. M., and Kenny, A. J. 1987. In Mammalian Ectoenzymes, vol. 14 (Kenny, A. J. and Turner., A. J., eds.), pp. 211–248, Elsevier, Amsterdam.Google Scholar
  43. 43.
    Barnes, K., Doherty, S., and Turner, A. J. 1995. Endopeptidase-24.11 is the integral membrane peptidase initiating degradation of somatostatin in the hippocampus. J. Neurochem. 64:1826–1832.Google Scholar
  44. 44.
    Matsas, R., Kenny, A. J., and Turner, A. J. 1986. An immunohistochemical study of endopeptidase-24.11 (enkephalinase) in the pig nervous system. Neuroscience. 18:991–1012.Google Scholar
  45. 45.
    Waksman, G., Hamel, E., Delay-Goyet, P., and Roques, B. P. 1986. Neuronal localisation of the neutral endopeptidase ‘enkephalinase’ in rat brain revealed by lesions and auto radiography. EMBO J. 5:3163–3166.Google Scholar
  46. 46.
    Marcel, D., Pollard, H., Verroust, P., Schwartz, J. C., and Beaudet, A. 1990. Electron microscopic localisation of immunoreactive enkephalinase (EC 3.4.24.11) in the neostriatum of the rat. J. Neurosci. 10:2804–2817.Google Scholar
  47. 47.
    Barnes, K., Matsas, R., Hooper, N. M., Turner, A. J., and Kenny, A. J. 1988. Endopeptidase-24.11 is striosomally ordered in pig brain and, in contrast to aminopeptidase N and peptidyl dipeptidase A (‘angiotensin converting enzyme’), is a marker for a set of striatal efferent fibres. Neuroscience. 27:799–817.Google Scholar
  48. 48.
    Barnes, K., Turner, A. J., and Kenny, A. J. 1988. Electronmi-croscopic immunocytochemistry of pig brain shows that endopeptidase-24.11 is localized in neuronal membranes. Neurosci. Lett. 94:64–69.Google Scholar
  49. 49.
    Barnes, K., Turner, A. J., and Kenny, A. J. 1992. Membrane localisation of endopeptidase-24.11 and peptidyl dipeptidase A (angiotensin converting enzyme) in the pig brain: a study using sub-cellular fractionation and electron microscopic immunocytochemistry. J. Neurochem. 58:2088–2096.Google Scholar
  50. 50.
    Barnes, K., Turner, A. J., and Kenny, A. J. 1993. An immunoelectron microscopic study of pig substantia nigra shows co-localization of endopeptidase-24.11 with substance P. Neuroscience. 53:1073–1082.Google Scholar
  51. 51.
    Waksman, G., Hamel, E., Fournie-Zaluski, M.-C., and Roques, B. P. 1986. Autoradiographic comparison of the distribution of the neutral endopeptidase ‘enkephalinase’ and of m and d opioid receptors in rat brain. Proc. Natl. Acad. Sci. USA. 83:1523–1527.Google Scholar
  52. 52.
    Defendini, R., Zimmerman, E. A., Weare, J. A., Alhenc-Gelas, F., and Erdos, E. G. 1983. Angiotensin converting enzyme in epithelial and neuroepithelial cells. Neuroendocrinol. 37:32–40.Google Scholar
  53. 53.
    Strittmatter, S. M., Lo, M. M. S., Javitch, J. A., and Snyder, S. H. 1984. Autoradiographic visualisation of angiotensin converting enzyme in rat brain with [3H] captopril: localisation to a striatonigral pathway. Proc. Natl. Acad. Sci. USA. 81:1599–1603.Google Scholar
  54. 54.
    Pickel, V. M., Chan, J., and Ganten, D. 1986. Dual peroxidase and colloidal gold-labelling study of angiotensin converting enzyme and angiotensin-like immunoreactivity in the rat subfornical organ. J. Neurosci. 6:2457–2469.Google Scholar
  55. 55.
    Erdos, E. G., and Skidgel, R. A. 1987. The angiotensin I converting enzyme. Lab. Invest. 56:345–348.Google Scholar
  56. 56.
    Brownfield, M. S., Reid, I. A., Ganten, D., and Ganong, W. F. 1982. Differential distribution of immunoreactive angiotensin and angiotensin-converting enzyme in rat brain. Neuroscience. 7: 1759–1769.Google Scholar
  57. 57.
    Williams, T. A., Hooper, N. M., and Turner, A. J. 1991. Characterization of neuronal and endothelial forms of angiotensin converting enzyme in pig brain. J. Neurochem. 57:193–199.Google Scholar
  58. 58.
    Solhonne, B., Gros, C., Pollard, H., and Schwartz, J.-C. 1987. Major localisation of aminopeptidases M in rat brain microvessels. Neuroscience. 22:225–232.Google Scholar
  59. 59.
    Hersh, L. B., Aboukhair, N., and Watson, S. 1987. Immunohistochemical localisation of aminopeptidase M in rat brain and periphery: relationship of enzyme localisation and enkephalin metabolism. Peptides. 8:523–532.Google Scholar
  60. 60.
    Schnabel, R., Bernstein, H.-G., Luppa, H., Lojda, Z., and Barth, A. 1992. Aminopeptidase in the circumventricular organs of the mouse brain: a histochemical study. Neuroscience 47:431–438.Google Scholar
  61. 61.
    Barnes, K., Kenny, A. J., and Turner, A. J. 1994. Localization of aminopeptidase N and dipeptidyl peptidase IV in pig striatum and in neuronal and glial cell cultures. Eur. J. Neurosci. 6:531–537.Google Scholar
  62. 62.
    Kunz, J., Krause, D., Kremer, M., and Dermietzel, R. 1994. The 140-kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase. N. J. Neurochem. 62:2375–2386.Google Scholar
  63. 63.
    Ikura, T., Sawamura, T., Shiraki, T., Hosokawa, H., Kido, T., Hoshikawa, H., Shimada, K., Tanzawa, K., Kobayashi, S., Miwa, S., and Masaki, T. 1994. cDNA cloning and expression of bovine endothelin-converting enzyme. Biochem. Biophys. Res. Commun. 203:1417–1422.Google Scholar
  64. 64.
    Warner, T. D., Budzik, G. P., Matsumoto, T., Mitchell, J. A., Forstermann, U., and Murad, F. 1992. Regional differences in endothelin-converting enzyme activity in rat brain: inhibition by phosphoramidon and EDTA. B. J. Pharmacol. 106:968–952.Google Scholar
  65. 65.
    Warner, T. D., Mitchell, J. A., D'Orleans-Juste, P., Ishii, K., Forstermann, U., and Murad, F. 1992. Characterisation of endothelin-converting enzyme from endothelial cells and rat brain: detection of the formation of biologically active endothelin-1 by rapid bioassay. Mol. Pharmacol. 41:399–403.Google Scholar
  66. 66.
    Deschepper, C. F., Houweling, A. D., and Picard, S. 1995. The membranes of cultured rat brain astrocytes contain endothelin-converting enzyme activity. Eur. J. Pharmacol. 275:61–66.Google Scholar
  67. 67.
    Barnes, K., Walkden, B. J., Wilkinson, T. C., and Turner, A. J. 1997. Expression of endothelin-converting enzyme in both neuroblastoma and glial cell lines and its localisation in rat hippocampus. J. Neurochem. 68: In press.Google Scholar
  68. 68.
    Takahashi, M., Fukuda, K., Shimada, K., Barnes, K., Turner, A. J., Ikeda, M., Koike, H., Yamamoto, Y., and Tanzawa, K. 1995. Localization of rat endothelin-converting enzyme to vascular endothelial cells and some secretory cells. Biochem. J. 311:657–665.Google Scholar
  69. 69.
    Barnes, K., Shimada, K., Takahashi, M., Tanzawa, K., and Turner, A. J. 1996. Metallopeptidase inhibitors induce an up-regulation of endothelin-converting enzyme levels and its redistribution from the plasma membrane to an intracellular compartment. J. Cell Sci. 109:919–928.Google Scholar
  70. 70.
    Waxman, L., Doshi, K. P., Gaul, S. L., Wang, S., Bednar, R. A., and Stern, A. M. 1994. Identification and characterisation of endothelin-converting activity from EAHY 926 cells: evidence for the physiologically relevant human enzyme. Arch. Biochem. Biophys. 308:240–253.Google Scholar
  71. 71.
    Corder, R., Khan, N., and Harrison, V. J. 1995. A simple method for isolating human endothelin converting enzyme free from contamination by neutral endopeptidase-24.11. Biochem. Biophys. Res. Commun. 207:377–362.Google Scholar
  72. 72.
    Gautam, M., Noakes, P. G., Mudd, J., Nichol, M., Chu, G. C., Sanes, J. R., and Merlie, J. P. 1995. Failure of postsynaptic specialisation to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377:232–236.Google Scholar
  73. 73.
    Gui, G., Xu, D., Emoto, N., and Yanagisawa, M. 1993. Intracellular localisation of membrane-bound endothelin-converting enzymes from rat lung. J. Cardiovasc. Pharmacol. 22(Suppl. 8): S53–56.Google Scholar
  74. 74.
    Harrison, V. J., Barnes, K., Turner, A. J., Wood, E., Corder, R., and Vane, J. R. 1995. Identification of endothelin 1 and big endothelin 1 in secretory vesicles isolated from bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA. 92:6344–6348.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of LeedsLeedsUnited Kingdom

Personalised recommendations