Optical and Quantum Electronics

, Volume 35, Issue 2, pp 101–110 | Cite as

Axial intensity distribution and focal shifts of focused partially coherent conical Bessel–Gauss beams

  • Z. Hricha
  • L. Dalil-Essakali
  • A. Belafhal
Article

Abstract

Based on the generalized Huygens–Fresnel diffraction integral and the theory of partially coherent light, the axial intensity distribution and the focal shifts of focused partially coherent conical Bessel–Gauss beams are investigated. The dependence of the maximum on-axis intensity and the associated focal shift on the Fresnel number and the coherence parameter are examined and illustrated numerically. The results related to the J0-correlated beams and the fully coherent Bessel–Gauss beams are obtained as particular cases of this study.

axial intensity distribution focal shift partially coherent conical beams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belafhal, A. and M. Ibnchaikh. Opt. Commun. 186 269, 2000.Google Scholar
  2. Collins, S.A. Opt. Soc. Am. 60 1168, 1970.Google Scholar
  3. Durnin, J.J. Opt. Soc. Am. 4 651, 1987.Google Scholar
  4. Durnin, J. et al. Phys. Rev. Lett. 58 1449, 1987.Google Scholar
  5. Friberg, A.T. and J. Turunen. J. Opt. Soc. Am. A. 5 713, 1988.Google Scholar
  6. Friberg, A. et al. Phys. Rev. A. 43 7079, 1991.Google Scholar
  7. Friberg, A.T. et al. Opt. Commun. 196 1, 2001.Google Scholar
  8. Gori, F. et al. Opt. Commun. 64 311, 1987.Google Scholar
  9. Gradshteyn, I.S. and I.M. Ryzhik. Tables of Integrales, Series, and Products, fifth Ed., Academic Press, New York, 1994.Google Scholar
  10. Hricha, Z. et al. Phys. Chem. News 3 11, 2001.Google Scholar
  11. Ibnchaikh, M. and A. Belafhal. Opt. Commun. 193 73, 2001.Google Scholar
  12. Ibnchaikh, M. et al. Opt. Commun. 190 29, 2001.Google Scholar
  13. Kowarz, M.W. and G.S. Agarwal. J. Opt. Soc. Am. A 12 1324, 1995.Google Scholar
  14. Lü, B. and W. Huang. Opt. Commun. 109 43, 1994.Google Scholar
  15. Luü, B. et al. J. Mod. Optics. 42 289, 1995.Google Scholar
  16. Mandel, L. and E. Wolf. Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.Google Scholar
  17. Shchegrov, A.V. and E. Wolf. Opt. Lett. 25 141, 2000.Google Scholar
  18. Turunen, J. and A.T. Friberg. Opt. Laser Technol. 18 259, 1986.Google Scholar
  19. Turunen, J. et al. J. Opt. Soc. Am. A. 8 282, 1991.Google Scholar
  20. Wang, W. et al. J. Opt. Soc. Am. A. 14 491, 1997.Google Scholar
  21. Watson, G.N.A. Treatise of the Theory of Bessel Functions, second Ed., Cambridge University Press, Cambridge, 1952.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Z. Hricha
    • 1
  • L. Dalil-Essakali
    • 1
  • A. Belafhal
    • 1
  1. 1.Laboratoire de Physique Moléculaire, Département de PhysiqueUniversité Chouaïb DoukkaliEl JadidaMorocco

Personalised recommendations