Solar Physics

, Volume 210, Issue 1–2, pp 341–356 | Cite as

Rhessi and Trace Observations of the 21 April 2002 x1.5 Flare

  • Peter T. Gallagher
  • Brian R. Dennis
  • Säm Krucker
  • Richard A. Schwartz
  • A. Kimberley Tolbert
Article

Abstract

Observations of the X1.5 flare on 21 April 2002 are reviewed using the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and the Transition Region and Coronal Explorer (TRACE). The major findings are as follows: (1) The 3–25 keV X-rays started < 4 min before the EUV (195 Å) emission suggesting that the initial energy release heated plasma directly to ≳20 MK, well above the 1.6 MK needed to produce the Fe xii (195 Å) line. (2) Using coaligned 12–25 keV RHESSI and TRACE images, further evidence is found for the existence of hot (15–20 MK) plasma in the 195 Å passband. This hot, diffuse emission is attributed to the presence of the Fe xxiv (192 Å) line within the TRACE 195 Å passband. (3) The 12–25 keV source centroid moves away from the limb with an apparent velocity of ∼ 9.9 km s−1, slowing to ∼ 1.7 km s−1 after 3 hours, its final altitude being ∼ 140 Mm after ∼ 12 hours. This suggests that the energy release site moves to higher altitudes in agreement with classical flare models. (4) The 50–100 keV emission correlates well with EUV flare ribbons, suggesting thick-target interactions at the footpoints of the magnetic arcade. The 50–100 keV time profile matches the time derivative of the GOES light curve (Neupert effect), which suggests that the same electrons that produced the thick-target hard X-ray emission also heat the plasma seen in soft X-rays. (5) X-ray footpoint emission has an E−3 spectrum down to ∼ 10 keV suggesting a lower electron cutoff energy than previously thought. (6) The hard X-ray (25–200 keV) peaks have FWHM durations of ∼ 1 min suggesting a more gradual energy release process than expected. (7) The TRACE images reveal a bright symmetric front propagating away from the main flare site at speeds of ≥ 120 km s−1. This may be associated with the fast CME observed several minutes later by LASCO. (8) Dark sinuous lanes are observed in the TRACE images that extend almost radially from the post-flare loop system. This `fan of spines' becomes visible well into the decay phase of the flare and shows evidence for both lateral and downward motions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

5108116.zip (8.5 mb)
Supplementary material, approximately 8.50 MB.

References

  1. Andries, J. and Goossens, M.: 2001, Astron. Astrophys. 368, 1083.MATHCrossRefADSGoogle Scholar
  2. Andries, J., Tirry, W. J., and Goossens, M.: 2000, Astrophys. J. 531, 561.CrossRefADSGoogle Scholar
  3. Aschwanden, M. J., Schmahl, E., and the RHESSI Team: 2002, Solar Phys., this volume.Google Scholar
  4. Czaykowska, A., De Pontieu, B., Alexander, D., and Rank, G.: 1999, Astrophys. J. 521, L75.CrossRefADSGoogle Scholar
  5. Gallagher, P. T. and Dennis, B. R.: 2002, Astrophys. J., in preparation.Google Scholar
  6. Gallagher, P. T., Moon, Y.-J., and Wang, H.: 2002, Solar Phys. 209, 169.CrossRefADSGoogle Scholar
  7. Handy, B. N. et al.: 1999, Solar Phys. 187, 229.CrossRefADSGoogle Scholar
  8. Kopp, R. A. and Pneuman, G. W.: 1976, Solar Phys. 50, 85.CrossRefADSGoogle Scholar
  9. Lin, R. P. et al.: 2002, Solar Phys., this volume.Google Scholar
  10. Masuda, S., Kosugi, T., and Hudson, H. S.: 2001, Solar Phys. 204, 57.CrossRefADSGoogle Scholar
  11. McKenzie, D. E. and Hudson, H. S.: 1999, Astrophys. J. 519, L93.CrossRefADSGoogle Scholar
  12. Qiu, J., Ding, M. D., Wang, H., Gallagher, P. T., Sato, J., Denker, C., Goode, P. R.: 2001, Astrophys. J. 554, 445.CrossRefADSGoogle Scholar
  13. Švestka, Z., Stewart, R. T., Hoyng, P., van Tend, W., Acton, L. W., Gabriel, A. H., Rapley, C. G., Boelee, A., Bruner, E. C., de Jager, C., Lafleur, H., Nelson, G., Simnett, G. M., van Beek, H. F., and Wagner, W. J.: 1982, Solar Phys. 75, 305.CrossRefADSGoogle Scholar
  14. Švestka, Z. F., Fontenla, J. M., Machado, M. E., Martin, S. F., Neidig, D. F., and Poletto, G.: 1987, Solar Phys. 108, 237.CrossRefADSGoogle Scholar
  15. Švestka, Z. F., Fárník, F., Hudson, H. S., and Hick, P.: 1998, Solar Phys. 182, 179.CrossRefADSGoogle Scholar
  16. Tanaka, K.: 1983, in P. B. Byrne and M. Rodono (eds.), ‘Activity in Red-Dwarf Stars’, IAU Colloq. 71, 307.Google Scholar
  17. Tanaka, K.: 1987, Publ. Astron. Soc. Japan 39, 1.ADSGoogle Scholar
  18. Tsuneta, S.: 1997, Astrophys. J. 483, 507.CrossRefADSGoogle Scholar
  19. Tsuneta, S., Takakura, T., Nitta, N., Ohki, K., Tanaka, K., Makishima, K., Murakami, T., Oda, M., and Ogawara, Y.: 1984, Astrophys. J. 280, 887.CrossRefADSGoogle Scholar
  20. Warren, H. P. and Reeves, K. K.: 2001, Astrophys. J. 554, L103.CrossRefADSGoogle Scholar
  21. Young, C. A., Dennis, B. R., Schwartz, R. A., and Tolbert, A. K.: 2002, Solar Phys., in preparation.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Peter T. Gallagher
    • 1
    • 2
  • Brian R. Dennis
    • 1
  • Säm Krucker
    • 3
  • Richard A. Schwartz
    • 1
    • 4
  • A. Kimberley Tolbert
    • 1
    • 4
  1. 1.Laboratory for Astronomy and Solar PhysicsNASA Goddard Space Flight CenterUSA
  2. 2.L-3 Com Analytics Corp.LargoU.S.A
  3. 3.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyU.S.A
  4. 4.Science Systems and Applications, Inc.LanhamU.S.A

Personalised recommendations