Neurochemical Research

, Volume 28, Issue 2, pp 195–214 | Cite as

Metabolism and Functions of Phosphatidylserine in Mammalian Brain

  • Rita Mozzi
  • Sandra Buratta
  • Gianfrancesco GoracciEmail author


Phosphatidylserine (PtdSer) is involved in cell signaling and apoptosis. The mechanisms regulating its synthesis and degradation are still not defined. Thus, its role in these processes cannot be clearly established at molecular level. In higher eukaryotes, PtdSer is synthesized from phosphatidylethanolamine or phosphatidylcholine through the exchange of the nitrogen base with free serine. PtdSer concentration in the nervous tissue membranes varies with age, brain areas, cells, and subcellular components. At least two serine base exchange enzymes isoforms are present in brain, and their biochemical properties and regulation are still largely unknown because their activities vary with cell type and/or subcellular fraction, developmental stage, and differentiation. These peculiarities may explain the apparent contrasting reports. PtdSer cellular levels also depend on its decarboxylation to phosphatidylethanolamine and conversion to lysoPtdSer by phospholipases. Several aspects of brain PtdSer metabolism and functions seem related to the high polyunsaturated fatty acids content, particularly docosahexaenoic acid (DHA).

Phosphatidylserine base exchange phosphatidylserine decarboxylase docosahexaenoic acid cell signaling apoptosis brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9:484–496.PubMedGoogle Scholar
  2. 2.
    Newton, A. C. and Koshland, D. E. J. 1990. Phosphatidylserine affects specificity of protein kinase C substrate phosphorylation and autophosphorylation. Biochemistry 29:6656–6661.PubMedGoogle Scholar
  3. 3.
    Sakane, F., Yamada, K., Imai, S., and Kanoh, H. 1991. Porcine 80–kDa diacylglycerol kinase is a calcium-binding and calcium/phospholipid-dependent enzyme and undergoes calcium-dependent translocation. J. Biol. Chem. 266:7096–7100.PubMedGoogle Scholar
  4. 4.
    Ghosh, S., Xie, W. Q., Quest, A. F., Mabrouk, G. M., Strum, J. C., and Bell, R. M. 1994. The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras. J. Biol. Chem. 269:10000–10007.PubMedGoogle Scholar
  5. 5.
    Calderon, C., Huang, Z. H., Gage, D. A., Sotomayor, E. M., and Lopez, D. M. 1994. Isolation of a nitric oxide inhibitor from mammary tumor cells and its characterization as phosphatidylserine. J. Exp. Med. 180:945–958.PubMedGoogle Scholar
  6. 6.
    Gagne, J., Giguere, C., Tocco, G., Ohayon, M., Thompson, R. F., Baudry, M., and Massicotte, G. 1996. Effect of phosphatidylserine on the binding properties of glutamate receptors in brain sections from adult and neonatal rats. Brain Res. 740: 337–345.PubMedGoogle Scholar
  7. 7.
    Foster, A. C., Fagg, G. E., Harris, E. W., and Cotman, C. W. 1982. Regulation of glutamate receptors: Possible role of phosphatidylserine. Brain Res. 242:374–377.PubMedGoogle Scholar
  8. 8.
    Levi, D. S., Medina, J. H., and De Robertis, E. 1989. In vivo and in vitro modulation of central type benzodiazepine receptors by phosphatidylserine. Brain Res. Mol. Brain Res. 5:9–15.PubMedGoogle Scholar
  9. 9.
    Devaux, P. F. and Zachowski, A. 1994. Maintenance and consequences of membrane phospholipid asymmetry. Chem. Phys. Lip. 73:107–120.Google Scholar
  10. 10.
    Bevers, E. M., Comfurius, P., Van Rijn, J. L. M. L., Hemker, H. C., and Zwaal, R. F. A. 1982. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur. J. BioChem. 122:429–436.PubMedGoogle Scholar
  11. 11.
    Connor, J., Pak, C. C., and Schroit, A. J. 1994. Exposure of phosphatidylserine in the outer leaflet of human red blood cells: Relationship to cell density, cell age, and clearance by mononuclear cells. J. Biol. Chem. 269:2399–2404.PubMedGoogle Scholar
  12. 12.
    Fadok, V. A., Savill, J. S., Haslett, C., Bratton, D. L., Doherty, D. E., Campbell, P. A., and Henson P. M. 1992. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immun. 149:4029–4035.PubMedGoogle Scholar
  13. 13.
    Bevers, E. M., Comfurius, P., Dekkers, D. W., and Zwaal, R. F. 1999. Lipid translocation across the plasma membrane of mammalian cells. Biochim. Biophys. Acta. 1439:317–330.PubMedGoogle Scholar
  14. 14.
    Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., Rader, J. A., van Schie, R. C., LaFace, D. M., and Green, D. R. 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182:1545–1556.PubMedGoogle Scholar
  15. 15.
    Fadeel, B., Gleiss, B., Hogstrand, K., Chandra, J., Wiedmer, T., Sims, P. J., Henter, J. I., Orrenius, S., and Samali, A. 1999. Phosphatidylserine exposure during apoptosis is a cell-type-specific event and does not correlate with plasma membrane phospholipid scramblase expression. Biochem. Biophys. Res. Commun. 266:504–511.PubMedGoogle Scholar
  16. 16.
    Pelassy, C., Breittmayer, J. P., and Aussel, C. 2000. Regulation of phosphatidylserine exposure at the cell surface by the serine-base exchange enzyme system during CD95–induced apoptosis. Biochem. Pharmacol. 59:855–863.PubMedGoogle Scholar
  17. 17.
    Infante, J. P. 1984. Biosynthesis of acyl-specific glycerophospholipids in mammalian tissues. Postulation of new pathways. FEBS Lett. 170:1–14.PubMedGoogle Scholar
  18. 18.
    Baranska, J. 1988. A new pathway for phosphatidylserine synthesis in rat liver microsomes. FEBS Lett. 228:175–178.PubMedGoogle Scholar
  19. 19.
    Pullarkat, R. K., Sbaschnig-Agler, M., and Reha, H. 1981. Biosynthesis of phosphatidylserine in rat brain microsomes. Biochim. Biophys. Acta 664:117–123.PubMedGoogle Scholar
  20. 20.
    Bevers, E. M., Comfurius, P., and Zwaal R. F. A. 1983. Changes in membrane phospholipid distribution during platelet activation. Biochim. Biophys. Acta 736:57–66.PubMedGoogle Scholar
  21. 21.
    Goodford, P. J. 1985. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28:849–857.PubMedGoogle Scholar
  22. 22.
    Svennerholm, L. 1968. Distribution and fatty acid composition of phosphoglycerides in normal human brain. J. Lip. Res. 9: 570–579.Google Scholar
  23. 23.
    Sun, G. Y., Huang, H., Kelleher, H. A., Stubbs, E. B. Jr., and Sun, A. Y. 1988. Marker enzymes, phospholipids and acyl group composition of a somal plasma membrane fraction isolated from rat cerebral cortex: A comparison with microsomes and synaptic plasma membranes. Neurochem. Int. 12: 69–77.Google Scholar
  24. 24.
    O'Brien, J. S., Fillerup, D. L., and Mead, J. F. 1964. Quantification and fatty acid and fatty aldehyde composition of ethanolamine, choline, and serine glycerophosphatides in human cerebral grey and white matter. J. Lip. Res. 5:329–338.Google Scholar
  25. 25.
    Blomstrand, C. and Hamberger, A. 1970. Amino acid incorporation in vitro into protein of neuronal and glial cell-enriched fractions. J. NeuroChem. 17:1187–1195.PubMedGoogle Scholar
  26. 26.
    Porcellati, G. and Goracci, G. 1976. Phospholipid composition and turnover in neuronal and glial membranes. Pages 203–214, in Paoletti, R., Porcellati, G., and Jacini, G. (eds.), Lipids (Vol. 1), Raven Press, New York.Google Scholar
  27. 27.
    Witter, B. and Debuch, H. 1982. On the phospholipid metabolism of glial cell primary cultures: Cell characterization and their utilization of 1–alkyl-glycerophosphoethanolamine. J. NeuroChem. 38:1029–1037.PubMedGoogle Scholar
  28. 28.
    Murphy, E. J. and Horrocks, L. A. 1993. Composition of the phospholipids and their fatty acids in the ROC-1 oligodendroglial cell line. Lipids 28:67–71.PubMedGoogle Scholar
  29. 29.
    Murphy, E. J. and Horrocks, L. A. 1993. Effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells. Biochim. Biophys. Acta 1167:131–136.PubMedGoogle Scholar
  30. 30.
    Klein, J. 2000. Membrane breakdown in acute and chronic neurodegeneration: Focus on choline-containing phospholipids. J. Neural. Transm. 107:1027–1063.PubMedGoogle Scholar
  31. 31.
    Farooqui, A. A., Horrocks, L. A., and Farooqui, T. 2000. Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lip. 106:1–29.Google Scholar
  32. 32.
    De Medio, G. E., Goracci, G., Horrocks, L. A., Lazarewicz, J. W., Mazzari, S., Porcellati, G., Strosznajder, J., and Trovarelli, G. 1980. The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain. Ital. J. BioChem. 29:412–432.PubMedGoogle Scholar
  33. 33.
    Enseleit, W. H., Domer, F. R., Jarrott, D. M., and Baricos, W. H. 1984. Cerebral phospholipid content and Na+,K+-AT-Pase activity during ischemia and postischemic reperfusion in the mongolian gerbil. J. NeuroChem. 43:320–327.PubMedGoogle Scholar
  34. 34.
    Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1992. Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA 89:1671–1675.PubMedGoogle Scholar
  35. 35.
    Farooqui A. A., Rapoport, S. I., and Horrocks, L. A. 1997. Membrane phospholipid alterations in Alzheimer's disease: Deficiency of ethanolamine plasmalogens. Neurochem. Res. 22: 523–527.PubMedGoogle Scholar
  36. 36.
    Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. 1995. Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20:1329–1333.PubMedGoogle Scholar
  37. 37.
    Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. 1995. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer's disease brain. Brain Res. 698:223–226.PubMedGoogle Scholar
  38. 38.
    Murphy, E. J., Schapiro, M. B., Rapoport, S. I., and Shetty, H. U. 2000. Phospholipid composition and levels are altered in Down syndrome brain. Brain Res. 867:9–18.PubMedGoogle Scholar
  39. 39.
    Lopez, G. H., Ilincheta de Boschero, M. G., Castagnet, P. I., and Giusto, N. M. 1995. Age-associated changes in the content and fatty acid composition of brain glycerophospholipids. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 112:331–343.PubMedGoogle Scholar
  40. 40.
    Favrelere, S., Stadelmann-Ingrand, S., Huguet, F., De Javel, D., Piriou, A., Tallineau, C., and Durand, G. 2000. Age-related changes in ethanolamine glycerophospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiol. Aging 21: 653–660.PubMedGoogle Scholar
  41. 41.
    Garcia, M. C., Ward, G., Ma, Y. C., Salem, N., and Kim, H. Y. 1998. Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain microsomes and C6 glioma cells. J. NeuroChem. 70:24–30.PubMedGoogle Scholar
  42. 42.
    Kurvinen, J. P., Kuksis, A., Sinclair, A. J., Abedin, L., and Kallio, H. 2000. The effect of low alpha-linolenic acid diet on glycerophospholipid molecular species in guinea pig brain. Lipids 35:1001–1009.PubMedGoogle Scholar
  43. 43.
    Hamilton, L., Greiner, R., Salem, N. J., and Kim, H. Y. 2000. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35:863–869.PubMedGoogle Scholar
  44. 44.
    Salem, N. J., Litman, B., Kim, H. Y., and Gawrisch, K. 2001. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959.PubMedGoogle Scholar
  45. 45.
    Bjerve, K. S. 1973. The Ca2+-dependent biosynthesis of lecithin, phosphatidylethanolamine and phosphatidylserine in rat liver subcellular particles. Biochim. Biophys. Acta 296:549–562.PubMedGoogle Scholar
  46. 46.
    Gaiti, A., De Medio, G. E., Brunetti, M., Amaducci, L., and Porcellati, G. 1974. Properties and function of the calcium-dependent incorporation of choline, ethanolamine and serine into the phospholipids of isolated rat brain microsomes. J. NeuroChem. 23:1153–1159.PubMedGoogle Scholar
  47. 47.
    Porcellati, G. and Di Jeso, F. 1971. Membrane-bound enzymic activity in the base-exchange reactions of phospholipid metabolism. Pages 111–133, in Poecellati, G. and Di Jeso, F. (eds), Membrane-Bound Enzymes, Plenum Press: New York.Google Scholar
  48. 48.
    Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. 1971. Base-exchange reactions for the synthesis of phospholipids in nervous tissue: the incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J. NeuroChem. 18:1395–1417.PubMedGoogle Scholar
  49. 49.
    Kanfer, J. N. 1972. Base exchange reactions of the phospholipids in rat brain particles. J. Lip. Res. 13:468–476.Google Scholar
  50. 50.
    Buchanan, A. G. and Kanfer, J. N. 1980. The effects of various incubation temperatures, particulate isolation, and possible role of calmodulin on the activity of the base exchange enzymes of rat brain. J. NeuroChem. 35:815–822.PubMedGoogle Scholar
  51. 51.
    Saito, M. and Kanfer, J. 1973. Solubilization and properties of a membrane-bound enzyme from rat brain catalyzing a base-exchange reaction. Biochem. Biophys. Res. Commun. 53:391–398.PubMedGoogle Scholar
  52. 52.
    Saito, M., Bourque, E., and Kanfer, J. 1975. Studies on base-exchange reactions of phospholipids in rat brain particles and a "solubilized" system. Arch. Biochem. Biophys. 169:304–317.PubMedGoogle Scholar
  53. 53.
    Miura, T. and Kanfer, J. 1976. Studies on base-exchange reactions of phospholipids in rat brain: Heterogeneity of base-exchange enzymes. Arch. Biochem. Biophys. 175:654–660.PubMedGoogle Scholar
  54. 54.
    Taki, T. and Kanfer, J. N. 1978. A phospholipid serine base exchange enzyme. Biochim. Biophys. Acta 528:309–317.PubMedGoogle Scholar
  55. 55.
    Miura, T., Taki, T., and Kanfer, J. N. 1981. Separation of base exchange enzymes from brain with special reference to L-serine exchange. Methods Enzymol. 71:588–596.PubMedGoogle Scholar
  56. 56.
    Gustavsson, L. and Alling, C. 1987. Formation of phosphatidylethanol in rat brain by phospholipase D. Biochem. Biophys. Res. Commun. 142:958–963.PubMedGoogle Scholar
  57. 57.
    Suzuki, T. T. and Kanfer, J. N. 1985. Purification and properties of an ethanolamine-serine base exchange enzyme of rat brain microsomes. J. Biol. Chem. 260:1394–1399.PubMedGoogle Scholar
  58. 58.
    Holbrook, P. G. and Wurtman, R. J. 1988. Presence of base-exchange activity in rat brain nerve endings: Dependence on soluble substrate concentrations and effect of cations. J. NeuroChem. 50:156–162.PubMedGoogle Scholar
  59. 59.
    Kuge, O., Nishijima, M., and Akamatsu. Y. 1986. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs. J. Biol. Chem. 261:5790–5794.PubMedGoogle Scholar
  60. 60.
    Kuge, O. and Nishijima, M. 1997. Phosphatidylserine synthase I and II of mammalian cells. Biochim. Biophys. Acta 1348: 151–156.PubMedGoogle Scholar
  61. 61.
    Saito, K., Nishijima, M., and Kuge, O. 1998. Genetic evidence that phosphatidylserine synthase II catalyzes the conversion of phosphatidylethanolamine to phosphatidylserine in Chinese hamster ovary cells. J. Biol. Chem. 273:17199–17205.PubMedGoogle Scholar
  62. 62.
    Stone, S. J., Cui, Z., and Vance, J. E. 1998. Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA: Overexpression in rat hepatoma cells inhibits the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis. J. Biol. Chem. 273:7293–7302.PubMedGoogle Scholar
  63. 63.
    Stone, S. J. and Vance, J. E. 1999. Cloning and expression of murine liver phosphatidylserine synthase (PSS)-2: Differential regulation of phospholipid metabolism by PSS1 and PSS2. Biochem. J. 342:57–64.PubMedGoogle Scholar
  64. 64.
    Stone, S. J. and Vance, J. E. 2000. Phosphatidylserine synthase-1 and-2 are localized to mitochondria-associated membranes. J. Biol. Chem. 275:34534–34540.PubMedGoogle Scholar
  65. 65.
    Sturbois-Balcerzak, B., Stone, S. J., Sreenivas, A., and Vance, J. E. 2001. Structure and expression of the murine phosphatidylserine synthase-1 gene. J. Biol. Chem. 276:8205–8212.PubMedGoogle Scholar
  66. 66.
    Bjerve, K. S. 1973. The phospholipid substrates in the Ca2+-stimulated incorporation of nitrogen bases into microsomal phospholipids. Biochim. Biophys. Acta 306:396–402.PubMedGoogle Scholar
  67. 67.
    Gaiti, A., Brunetti, M., and Porcellati, G. 1975. The relationships between the phospholipid pool and the base-exchange reaction in the Ca2+-stimulated incorporation of ethanolamine into brain microsomal phospholipids. FEBS Lett. 49:361–364.PubMedGoogle Scholar
  68. 68.
    Buratta, S., Hamberger, A., Ryberg, H., Nystrom, B., Sandberg, M., and Mozzi, R. 1998. Effect of serine and ethanolamine administration on phospholipid-related compounds and neurotransmitter amino acids in the rabbit hippocampus. J. NeuroChem. 71:2145–2150.PubMedGoogle Scholar
  69. 69.
    Bjerve, K. S. 1984. Phospholipid substrate-specificity of the L-serine base-exchange enzyme in rat liver microsomal fraction. Biochem. J. 219:781–784.PubMedGoogle Scholar
  70. 70.
    Ellingson, J. S. and Seenaiah, B. 1994. The selective use of stearoyl-polyunsaturated molecular species of phosphatidylcholine and phosphatidylethanolamine for the synthesis of phosphatidylserine. Biochim. Biophys. Acta 1213:113–117.PubMedGoogle Scholar
  71. 71.
    Green, P. and Yavin, E. 1995. Modulation of fetal rat brain and liver phospholipid content by intraamniotic ethyl docosahexaenoate administration. J. NeuroChem. 65:2555–2560.PubMedGoogle Scholar
  72. 72.
    Ikemoto, A., Kobayashi, T., Emoto, K., Umeda, M., Watanabe, S., and Okuyama, H. 1999. Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.PubMedGoogle Scholar
  73. 73.
    Kanfer, J. N. and McCartney, D. G. 1993. Modulation of the serine base exchange enzyme activity of rat brain membranes by amphiphilic cations and amphiphilic anions. J. NeuroChem. 60:1228–1235.PubMedGoogle Scholar
  74. 74.
    Wiktorek-Wojcik, M., Banasiak, M., Czarny, M., Stepkowski, D., and Baranska, J. 1997. Serine base exchange enzyme activity is modulated by sphingosine and other amphiphilic compounds: Possible role of positive charge in increasing the synthesis of phosphatidylserine. Biochem. Biophys. Res. Commun. 241:73–78.PubMedGoogle Scholar
  75. 75.
    Kanfer, J. N. and McCartney, D. 1991. Sphingosine and unsaturated fatty acids modulate the base exchange enzyme activities of rat brain membranes. FEBS Lett. 291:63–66.PubMedGoogle Scholar
  76. 76.
    Merrill, A. H. J. and Stevens, V. L. 1989. Modulation of protein kinase C and diverse cell functions by sphingosine: A pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim. Biophys. Acta 1010:131–139.PubMedGoogle Scholar
  77. 77.
    Rodriquez, F. D., Alling, C., and Gustavsson, L. 1996. Ethanol potentiates the uptake of [14C]serine into phosphatidylserine by base-exchange reaction in NG 108–15 cells. Neurochem. Res. 21:305–311.PubMedGoogle Scholar
  78. 78.
    Erkell, L. J., De Medio, G. E., Haglid, K., and Porcellati, G. 1980. Increased activity of a phospholipid base-exchange system by the differentiation of neoplastic cells from the nervous system. J. Neurosci. Res. 5:137–141.PubMedGoogle Scholar
  79. 79.
    Jelsema, C. L. and Morre, D. J. 1978. Distribution of phospholipid biosynthetic enzymes among cell components of rat liver. J. Biol. Chem. 253:7960–7971.PubMedGoogle Scholar
  80. 80.
    Goracci, G., Blomstrand, C., Arienti, G., Hamberger, A., and Porcellati, G. 1973. Base-exchange enzymic system for the synthesis of phospholipids in neuronal and glial cells and their subfractions: A possible marker for neuronal membranes. J. NeuroChem. 20:1167–1180.PubMedGoogle Scholar
  81. 81.
    Mozzi, R., Andreoli, V., Buratta, S., and Iorio, A. 1997. Different mechanisms regulate phosphatidylserine synthesis in rat cerebral cortex. Mol. Cell. BioChem. 168:41–49.PubMedGoogle Scholar
  82. 82.
    Kobayashi, M., McCartney, D. G., and Kanfer, J. N. 1988. Developmental changes and regional distribution of phospholipase D and base exchange enzyme activities in rat brain. Neurochem. Res. 13:771–776.PubMedGoogle Scholar
  83. 83.
    Gatti, C., Brunetti, M., and Gaiti, A. 1989. Serine incorporation into phospholipids in vivo and serine phosphoglyceride metabolic transformations in cerebral areas from adult and aged rats. Neurobiol. Aging 10:241–245.PubMedGoogle Scholar
  84. 84.
    Ilincheta de Boschero, M. G., Lopez, G. H., Castagnet, P. I., and Giusto, N. M. 2000. Differential incorporation of precursor moieties into cerebral cortex and cerebellum glycerophospholipids during aging. Neurochem. Res. 25:875–884.PubMedGoogle Scholar
  85. 85.
    Ilincheta de Boschero, M. G., Roque, M. E., Salvador, G. A., and Giusto, N. M. 2000. Alternative pathways for phospholipid synthesis in different brain areas during aging. Exp. Gerontol. 35:653–668.PubMedGoogle Scholar
  86. 86.
    Rhodes, P. G., Hu, Z. Y., and Sun, G. Y. 1993. Effects of chlorpromazine on phosphatidylserine biosynthesis in rat pup brain exposed to ethanol in utero. Neurochem. Int. 22:75–80.PubMedGoogle Scholar
  87. 87.
    Mozzi, R., Andreoli, V., and Horrocks, L. A. 1993. Phosphatidylserine synthesis in rat cerebral cortex: Effects of hypoxia, hypocapnia and development. Mol. Cell. BioChem. 126:101–107.PubMedGoogle Scholar
  88. 88.
    Ikemoto, A., Ohishi, M., Hata, N., Misawa, Y., Fujii, Y., and Okuyama, H. 2000. Effect of n-3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes. Lipids 35:1107–1115.PubMedGoogle Scholar
  89. 89.
    Kim, H. Y. and Hamilton, J. 2000. Accumulation of docosahexaenoic acid in phosphatidylserine is selectively inhibited by chronic ethanol exposure in C-6 glioma cells. Lipids 35: 187–195.PubMedGoogle Scholar
  90. 90.
    Gustavsson, L. and Hansson, E. 1990. Stimulation of phospholipase D activity by phorbol esters in cultured astrocytes. J. NeuroChem. 54:737–742.PubMedGoogle Scholar
  91. 91.
    Chandler, L. J., Harris, R. A., and Crews, F. T. 1998. Ethanol tolerance and synaptic plasticity. Trends Pharmacol. Sci. 19:491–495.PubMedGoogle Scholar
  92. 92.
    Gerstin, E. H. J., McMahon, T., Dadgar, J., and Messing, R. O. 1998. Protein kinase C delta mediates ethanol-induced upregulation of L-type calcium channels. J. Biol. Chem. 273: 16409–16414.PubMedGoogle Scholar
  93. 93.
    Sun, G. Y. and Sun, A. Y. 1983. Chronic ethanol administration induced an increase in phosphatidylserine in guinea pig synaptic plasma membranes. Biochem. Biophys. Res. Commun. 113:262–268.PubMedGoogle Scholar
  94. 94.
    Sun, G. Y., Huang, H. M., Lee, D. Z., and Sun, A. Y. 1984. Increased acidic phospholipids in rat brain membranes after chronic ethanol administration. Life Sci. 35:2127–2133.PubMedGoogle Scholar
  95. 95.
    Hattori, H. and Kanfer, J. N. 1983. Effects of base exchange reaction on the Na+, K+ ATPase in rat brain microsomes. Neurochem. Res. 8:1185–1195.PubMedGoogle Scholar
  96. 96.
    Hu, Z. Y., Sun, G. Y., and Rhodes, P. G. 1992. In utero ethanol exposure decreases the biosynthesis of phosphatidylserine in rat pup cerebrum. Alcohol. Clin. Exp. Res. 16:432–435.PubMedGoogle Scholar
  97. 97.
    Wojcik, M., Dygas, A., Bobeszko, M., Czajkowski, R., and Baranska, J. 2000. Effect of ethanol on ATP-induced phospholipases C and D and serine base exchange in glioma C6 cells. Neurochem. Int. 36:127–136.PubMedGoogle Scholar
  98. 98.
    Gustavsson, L. and Alling, C. 1989. Increase in synaptosomal acidic phospholipids after intermittent but not continuous ethanol exposure. Alcohol Alcohol 24:193–196.PubMedGoogle Scholar
  99. 99.
    Alling, C., Rodriguez, F. D., Gustavsson, L., and Simonsson, P. 1991. Continuous and intermittent exposure to ethanol: effect on NG 108–15 cell membrane phospholipids. Alcohol Alcohol 1:227–231.Google Scholar
  100. 100.
    Baranska, J., Przybylek, K., and Sabala, P. 1999. Capacitative calcium entry: Glioma C6 as a model of nonexcitable cells. Pol. J. Pharmacol. 51:153–162.PubMedGoogle Scholar
  101. 101.
    Putney, J. W. J. and Bird, G. S. 1993. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr. Rev. 14:610–631.PubMedGoogle Scholar
  102. 102.
    Gustavsson, L. and Alling, C. 1989. Effects of chronic ethanol exposure on fatty acids of rat brain glycerophospholipids. Alcohol. 6:139–146.PubMedGoogle Scholar
  103. 103.
    Harris, R. A., Baxter, D. M., Mitchell, M. A., and Hitzemann, R. J. 1984. Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice. Mol. Pharmacol. 25:401–409.PubMedGoogle Scholar
  104. 104.
    Bjerve, K. S. 1985. The biosynthesis of phosphatidylserine and phosphatidylethanolamine from L-[3–14C]serine in isolated rat hepatocytes. Biochim. Biophys. Acta 833:396–405.PubMedGoogle Scholar
  105. 105.
    Schneider, W. J. and Vance, D. E. 1979. Conversion of phosphatidylethanolamine to phosphatidylcholine in rat liver: Partial purification and characterization of the enzymatic activities. J. Biol. Chem. 254:3886–3891.PubMedGoogle Scholar
  106. 106.
    Yavin, E. and Zeigler, B. P. 1977. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture: Serine incorporation into serine phosphoglycerides—base exchange and decarboxylation patterns. J. Biol. Chem. 252:260–267.PubMedGoogle Scholar
  107. 107.
    Percy, A. K., Moore, J. F., Carson, M. A., and Waechter, C. J. 1983. Characterization of brain phosphatidylserine decarboxylase: Localization in the mitochondrial inner membrane. Arch. Biochem. Biophys. 223:484–494.PubMedGoogle Scholar
  108. 108.
    Butler, M. and Morell, P. 1983. The role of phosphatidylserine decarboxylase in brain phospholipid metabolism. J. NeuroChem. 41:1445–1454.PubMedGoogle Scholar
  109. 109.
    Hovius, R., Faber, B., Brigot, B., Nicolay, K., and de Kruijff, B. 1992. On the mechanism of the mitochondrial decarboxylation of phosphatidylserine. J. Biol. Chem. 267:16790–16795.PubMedGoogle Scholar
  110. 110.
    Vance, J. E. 1990. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265:7248–7256.PubMedGoogle Scholar
  111. 111.
    Rusinol, A. E., Cui, Z., Chen, M. H., and Vance, J. E. 1994. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J. Biol. Chem. 269:27494–27502.PubMedGoogle Scholar
  112. 112.
    Camici, O. and Corazzi, L. 1995. Import of phosphatidylethanolamine for the assembly of rat brain mitochondrial membranes. J. Membr. Biol. 148:169–176.PubMedGoogle Scholar
  113. 113.
    Corazzi, L., Pistolesi, R., Carlini, E., and Arienti, G. 1993. Transport of phosphatidylserine from microsomes to the inner mitochondrial membrane in brain tissue. J. NeuroChem. 60: 50–56.PubMedGoogle Scholar
  114. 114.
    Vance, J. E. 1991. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J. Biol. Chem. 266:89–97.PubMedGoogle Scholar
  115. 115.
    Camici, O. and Corazzi, L. 1997. Phosphatidylserine translocation into brain mitochondria: Involvement of a fusogenic protein associated with mitochondrial membranes. Mol. Cell. BioChem. 175:71–80.PubMedGoogle Scholar
  116. 116.
    Kevala, J. H. and Kim, H. Y. 2001. Determination of substrate preference in phosphatidylserine decarboxylation by liquid chromatography-electrospray ionization mass spectrometry. Anal. BioChem. 292:130–138.PubMedGoogle Scholar
  117. 117.
    Vos, J. P., de Haas, C. G. M., Van Golde, L. M. G., and Lopes-Cardozo, M. 1997. Relationships between phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin metabolism in cultured oligodendrocytes. J. NeuroChem. 68:1252–1260.PubMedGoogle Scholar
  118. 118.
    Woronczak, J. P., Poddana, H., Siucinska, E., Kossut, M., and Baranska, J. 1993. Metabolic conversion of phosphatidylserine via phosphatidylethanolamine into phosphatidylcholine in rat brain. Biochem. Mol. Biol. Int. 30:1153–1160.PubMedGoogle Scholar
  119. 119.
    Ikemoto, A. and Okuyama, H. 2000. Differential utilization of the ethanolamine moiety of phosphatidylethanolamine derived from serine and ethanolamine during NGF-induced neuritogenesis of PC12 cells. Neurochem. Res. 25:293–301.PubMedGoogle Scholar
  120. 120.
    Mozzi, R. and Porcellati, G. 1979. Conversion of phosphatidylethanolamine to phosphatidylcholine in rat brain by the methylation pathway. FEBS Lett. 100:363–366.PubMedGoogle Scholar
  121. 121.
    Blusztajn, J. K., Zeisel, S. H., and Wurtman, R. J. 1979. Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. Brain. Res. 179:319–327.PubMedGoogle Scholar
  122. 122.
    Savci, V. and Wurtman, R. J. 1995. Effect of cytidine on membrane phospholipid synthesis in rat striatal slices. J. NeuroChem. 64:378–384.PubMedGoogle Scholar
  123. 123.
    Blusztajn, J. K. and Wurtman, R. J. 1983. Choline and cholinergic neurons. Science 221:614–620.PubMedGoogle Scholar
  124. 124.
    Mozzi, R., Siepi, D., Andreoli, V., and Porcellati, G. 1981. The synthesis of choline plasmalogen by the methylation pathway in rat brain. FEBS Lett. 131:115–118.PubMedGoogle Scholar
  125. 125.
    Mogelson, S. and Sobel, B. E. 1981. Ethanolamine plasmalogen methylation by rabbit myocardial membranes. Biochim. Biophys. Acta 666:205–211.Google Scholar
  126. 126.
    Paltauf, F. 1983. Biosynthesis of 1–O-(1′-alkenyl)glycerolipids (Plasmalogens). Pages 107–128, in Mangold, H. K. and Paltauf, F.(eds.), Academic Press, New York-London.Google Scholar
  127. 127.
    Mozzi, R., Gramignani, D., Andriamampandr, C., Freysz, L., and Massarelli R. 1989. Choline plasmalogen synthesis by the methylation pathway in chick neurons in culture. Neurochem. Res. 14:579–583.PubMedGoogle Scholar
  128. 128.
    Horrocks, L. A., Yeo, Y. K., Harder, H. W., Mozzi, R., and Goracci, G. 1986. Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase. Adv. Cyclic Nucleot. Prot. Phosphor. Res. 20:263–292.Google Scholar
  129. 129.
    Woelk, H. and Porcellati, G. 1973. Subcellular distribution and kinetic properties of rat brain phospholipases A1 and A2. Hoppe-Seylers. Z. Physiol. Chem. 354:90–100.PubMedGoogle Scholar
  130. 130.
    Woelk, H., Goracci, G., Gaiti, A., and Porcellati, G. 1973. Phospholipase A1 and A2 activities of neuronal and glial cells of the abbit brain. Hoppe-Seylers Z. Physiol. Chem. 354:729–736.PubMedGoogle Scholar
  131. 131.
    Woelk, H., Peiler-Ichikawa, K., Binaglia, L., Goracci, G., and Porcellati, G. 1974. Distribution and properties of phospholipases A1 and A2 in synaptosomes and subsynaptosomal fractions of rat brain. Hoppe-Seylers Z. Physiol. Chem. 355:1535–1542.PubMedGoogle Scholar
  132. 132.
    Farooqui, A. A., Yang, H. C., Rosenberger, T. A., and Horrocks, L. A. 1997. Phospholipase A(2) and its role in brain tissue. J. NeuroChem. 69:889–901.PubMedGoogle Scholar
  133. 133.
    Yang, H. C., Mosior, M., Ni, B. H., and Dennis, E. A. 1999. Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A(2) from rat brain. J. NeuroChem. 73:1278–1287.PubMedGoogle Scholar
  134. 134.
    Winstead, M. V., Balsinde, J., and Dennis, E. A. 2000. Calcium-independent phospholipase A(2): Structure and function. Biochim. Biophys. Acta 1488:28–39.PubMedGoogle Scholar
  135. 135.
    Dennis, E. A. 1997. The growing phospholipase A(2) superfamily of signal transduction enzymes. Trends. Biochem. Sci. 22:1–2.PubMedGoogle Scholar
  136. 136.
    Kudo, I., Murakami, M., Hara, S., and Inoue, K. 1993. Mammalian non-pancreatic phospholipases A2. Biochim. Biophys. Acta 1170:217–231.PubMedGoogle Scholar
  137. 137.
    Capper, E. A. and Marshall, L. A. 2001. Mammalian phospholipases A(2): Mediators of inflammation, proliferation and apoptosis. Prog. Lipid Res. 40:167–197.PubMedGoogle Scholar
  138. 138.
    Li, W., Xia, J., and Sun, G. Y. 1999. Cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC): Response to genistein and pyrrolidine dithiocarbamate. J. Interferon. Cytokine. Res. 19:121–127.PubMedGoogle Scholar
  139. 139.
    Tong, W., Shah, D., Xu, J., Diehl, J. A., Hans, A., Hannink, M., and Sun, G. Y. 1999. Involvement of lipid mediators on cytokine signaling and induction of secretory phospholipase A2 in immortalized astrocytes (DITNC). J. Mol. Neurosci. 12:89–99.PubMedGoogle Scholar
  140. 140.
    Zanassi, P., Paolillo, M., and Schinelli, S. 1998. Coexpression of phospholipase A(2) isoforms in rat striatal astrocytes. Neurosci. Lett. 247:83–86.PubMedGoogle Scholar
  141. 141.
    Murakami, M., Nakatani, Y., Kuwata, H., and Kudo, I. 2000. Cellular components that functionally interact with signaling phospholipase A(2)s. Biochim. Biophys. Acta 1488:159–166.PubMedGoogle Scholar
  142. 142.
    van den Bosch, H., de Jong, J. G., and Aarsman, A. J. 1991. Phospholipase A2 from rat liver mitochondria. Methods Enzymol. 197:365–373.PubMedGoogle Scholar
  143. 143.
    Rordorf, G., Uemura, Y., and Bonventre, J. V. 1991. Characterization of phospholipase A2 (PLA2) activity in gerbil brain: Enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosci. 11: 1829–1836.PubMedGoogle Scholar
  144. 144.
    Macchioni, L., Corazzi, L., Nardicchi, V., and Goracci, G. 2001. Release of secretory type 2 phospholipase A2 from rat brain cortex mitochondria depends on respiratory state. J. NeuroChem. 77 (Suppl. 1):33 (P02–12).Google Scholar
  145. 145.
    Sato, T., Aoki, J., Nagai, Y., Dohmae, N., Takio, K., Doi, T., Arai, H., and Inoue, K. 1997. Serine phospholipid-specific phospholipase A that is secreted from activated platelets: A new member of the lipase family. J. Biol. Chem. 272:2192–2198.PubMedGoogle Scholar
  146. 146.
    Nagai, Y., Aoki, J., Sato, T., Amano, K., Matsuda, Y., Arai, H., and Inoue, K. 1999. An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J. Biol. Chem. 274:11053–11059.PubMedGoogle Scholar
  147. 147.
    Aoki, J., Nagai, Y., Hosono, H., Inoue, K., and Arai, H. 2002. Structure and function of phosphatidylserine-specific phospholipase A(1). Biochim. Biophys. Acta 1582:26–32.PubMedGoogle Scholar
  148. 148.
    Hosono, H., Aoki, J., Nagai, Y., Bandoh, K., Ishida, M., Taguchi, R., Arai, H., and Inoue, K. 2001. Phosphatidylserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2–acyl-1–lysophosphatidylserine. J. Biol. Chem. 276:29664–29670.PubMedGoogle Scholar
  149. 149.
    Yagami, T., Ueda, K., Asakura, K., Hata, S., Kuroda, T., Sakaeda, T., Takasu, N., Tanaka, K., Gemba, T., and Hori, Y. 2002. Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol. Pharmacol. 61:114–126.PubMedGoogle Scholar
  150. 150.
    Oka, S. and Arita, H. 1991. Inflammatory factors stimulate expression of group II phospholipase A2 in rat cultured astrocytes: Two distinct pathways of the gene expression. J. Biol. Chem. 266:9956–9960.PubMedGoogle Scholar
  151. 151.
    Morioka, N., Takeda, K., Kumagai, K., Hanada, T., Ikoma, K., Hide, I., Inoue, A., and Nakata, Y. 2002. Interleukin-1 beta-induced substance P release from rat cultured primary afferent neurons driven by two phospholipase A2 enzymes: Secretory type IIA and cytosolic type IV. J. NeuroChem. 80:989–997.PubMedGoogle Scholar
  152. 152.
    Bruni, A. and Toffano, G. 1982. Lysophosphatidylserine, a short-lived intermediate with plasma membrane regulatory properties. Pharmacol. Res. Commun. 14:469–484.PubMedGoogle Scholar
  153. 153.
    Kawamoto, K., Aoki, J., Tanaka, A., Itakura, A., Hosono, H., Arai, H., Kiso, Y., and Matsuda H. 2002. Nerve growth factor activates mast cells through the collaborative interaction with lysophosphatidylserine expressed on the membrane surface of activated platelets. J. Immunol. 168:6412–6419.PubMedGoogle Scholar
  154. 154.
    Facci, L., Skaper, S. D., Levin, D. L., and Varon, S. 1987. Dissociation of the stellate morphology from intracellular cyclic AMP levels in cultured rat brain astroglial cells: effects of ganglioside GMl and lysophosphatidylserine. J. NeuroChem. 48:566–573.PubMedGoogle Scholar
  155. 155.
    Ryu, S. B. and Palta, J. P. 2000. Specific inhibition of rat brain phospholipase D by lysophospholipids. J. Lip. Res. 41:940–944.Google Scholar
  156. 156.
    Mambrini, R., Buratta, S., Miniaci, M. C., Tempia, F., and Mozzi, R. 2001. Modulation of phosphatidylserine synthesis in cerebellar slices and its involvement in mGluRl mediated events. J. NeuroChem. 77 (Suppl. 1):46–(P04–38).Google Scholar
  157. 157.
    Sorrentino, G., Singh, I. N., Hubsch, A., Kanfer, J. N., Mykita, S., and Massarelli, R. 1992. Muscarinic binding sites in a catecholaminergic human neuroblastoma cell line. Neurochem. Res. 17:215–222.PubMedGoogle Scholar
  158. 158.
    Mikhaevitch, I. S., Singh, I. N., Sorrentino, G., Massarelli, R., and Kanfer, J. N. 1994. Modulation of phosphatidylserine synthesis by a muscarinic receptor occupancy in human neuroblastoma cell line LA-N-1. Biochem. J. 299:375–380.PubMedGoogle Scholar
  159. 159.
    Czarny, M., Sabala, P., Ucieklak, A., Kaczmarek, L., and Baranska, J. 1992. Inhibition of phosphatidylserine synthesis by glutamate, acetylcholine, thapsigargin and ionophore A23187 in glioma C6 cells. Biochem. Biophys. Res. Commun. 186:1582–1587.PubMedGoogle Scholar
  160. 160.
    Morikawa, S., Taniguchi, S., Mori, K., Kumada, K., and Fujiwara, M. 1985. Effects of calmodulin antagonists and calmodulin on phospholipid base-exchange activities in rabbit platelets. Thromb. Res. 37:267–278.PubMedGoogle Scholar
  161. 161.
    Singh, I. N., Sorrentino, G., Massarelli, R., and Kanfer, J. N. 1992. Oleoylamine and sphingosine stimulation of phosphatidylserine synthesis by LA-N-2 cells is protein kinase C independent. FEBS Lett. 296:166–168.PubMedGoogle Scholar
  162. 162.
    Czarny, M., Wiktorek, M., Sabala, P., Pomorski, P., and Baranska, J. 1995. Phosphatidylserine synthesis in phorbol ester treated glioma C6 cells. Biochem. Mol. Biol. Int. 36:659–667.PubMedGoogle Scholar
  163. 163.
    Kanfer, J. N., McCartney, D., and Hattori, H. 1998. Regulation of the choline, ethanolamine and serine base exchange enzyme activities of rat brain microsomes by phosphorylation and dephosphorylation. FEBS Lett. 240:101–104.Google Scholar
  164. 164.
    Strosznajder, J. 1997. Regulation of phosphatidylethanolamine degradation by enzyme(s) of subcellular fractions from cerebral cortex. Neurochem. Res. 22:1199–1204.PubMedGoogle Scholar
  165. 165.
    Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., and Hamberger, A. 1985. Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments. J. Cereb. Blood Flow. Metab. 5:413–419.PubMedGoogle Scholar
  166. 166.
    Sandberg, M., Nystrom, B., and Hamberger, A. 1985. Metabolically derived aspartate: Elevated extracellular levels in vivo in iodoacetate poisoning. J. Neurosci. Res. 13:489–495.PubMedGoogle Scholar
  167. 167.
    Duffy, T. E., Kohle, S. J., and Vannucci, R. C. 1975. Carbohydrate and energy metabolism in perinatal rat brain: Relation to survival in anoxia. J. NeuroChem. 24:271–276.PubMedGoogle Scholar
  168. 168.
    Buratta, S., Migliorati, G., Marchetti, C., Mambrini, R., Riccardi, C., and Mozzi, R. 2000. Dexamethasone increases the incorporation of [3H]serine into phosphatidylserine and the activity of serine base exchange enzyme in mouse thymocytes: a possible relation between serine base exchange enzyme and apoptosis. Mol. Cell. BioChem. 211:61–67.PubMedGoogle Scholar
  169. 169.
    Aussel, C., Pelassy, C., and Breittmayer, J. P. 1998. CD95 (Fas/APO-1) induces an increased phosphatidylserine synthesis that precedes its externalization during programmed cell death. FEBS Lett. 431:195–199.PubMedGoogle Scholar
  170. 170.
    Yu, A., Byers, D. M., Ridgway, N. D., McMaster, C. R., and Cook, H. W. 2000. Preferential externalization of newly synthesized phosphatidylserine in apoptotic U937 cells is dependent on caspase-mediated pathways. Biochim. Biophys. Acta. 1487:296–308.PubMedGoogle Scholar
  171. 171.
    Perry, V. H. 1994. Modulation of microglia phenotype. Neurol. Appl. Neurobiol. 20:177.Google Scholar
  172. 172.
    Witting, A., Muller, P., Herrmann, A., Kettenmann, H., and Nolte, C. 2000. Phagocytic clearance of apoptotic neurons by microglia/brain macrophages in vitro: Involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J. NeuroChem. 75:1060–1070.PubMedGoogle Scholar
  173. 173.
    De, S. R., Ajmone-Cat, M. A., Nicolini, A., and Minghetti, L. 2002. Expression of phosphatidylserine receptor and downregulation of pro-inflammatory molecule production by its natural ligand in rat microglial cultures. J. Neuropathol. Exp. Neurol. 61:237–244.PubMedGoogle Scholar
  174. 174.
    Kim, H. Y., Akbar, M., Lau, A., and Edsall, L. 2000. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3): Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275:35215–35223.PubMedGoogle Scholar
  175. 175.
    Fettucciari, K., Rosati, E., Scaringi, L., Cornacchione, P., Migliorati, G., Sabatini, R., Fetriconi, I., Rossi, R., and Marconi, P. 2000. Group B streptococcus induces apoptosis in macrophages. J. Immunol. 165:3923–3933.PubMedGoogle Scholar
  176. 176.
    Buratta, S., Fettucciari, K., Mambrini, R., Fetriconi, I., Marconi, P., and Mozzi, R. 2002. Group B streptococcus (GBS) modifies macrophage phosphatidylserine metabolism during induction of apoptosis. FEBS Lett. 520:68–72.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Rita Mozzi
    • 1
  • Sandra Buratta
    • 1
  • Gianfrancesco Goracci
    • 1
    Email author
  1. 1.Department of Internal Medicine, Division of BiochemistryUniversity of PerugiaPerugiaItaly

Personalised recommendations