Advertisement

Journal of Materials Science

, Volume 38, Issue 5, pp 1033–1038 | Cite as

Effect of dopant valence state of Mn-ions on the microstructures and nonlinear properties of microwave sintered ZnO-V2O5 Varistors

  • Chang-Shun Chen
Article

Abstract

In this study, the effect of dopant valence state of Mn-species on the microstructure and conduction behavior of microwave sintered ZnO-V2O5 ceramics was analyzed. Microwave sintering can markedly enhance the densification rate of ZnO-V2O5 ceramics, regardless the valence state of Mn-species incorporated. But only the samples doped with low valences Mn-ions (Mn2+ or Mn2.66+) exhibit large nonlinear coefficient (α = 21.9) with low leakage current density, whereas the ZnO-V2O5 ceramics added with high valence Mn-ions (Mn4+) show inferior nonohmic behaviors with high leakage current density under the same sintering conditions. Restated, the valence state of Mn-species incorporated in ZnO-V2O5 ceramics, insignificantly alters the grain growth behavior but markedly modifies their nonlinear electrical properties.

Keywords

Microstructure Microwave Valence State Growth Behavior Nonlinear Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. D. Mahan, L. M. Levinson and H. R. Philipp, J. Appl. Phys. 50 (1979) 2799.Google Scholar
  2. 2.
    G. E. Pike, Mater. Res. Soc. 5 (1982) 367.Google Scholar
  3. 3.
    M. Matsuoka, Jpn. J. Appl. Phys. 10 (1971) 736.Google Scholar
  4. 4.
    K. Mukae, K. Tsuda and I. Nagasawa, ibid. 16 (1977) 1361.Google Scholar
  5. 5.
    K. Koumotot, N. Aoki, N. Kitaori and H. Yanagida, J. Amer. Ceram. Soc. 65 (1982) C93.Google Scholar
  6. 6.
    E. D. Kim, C. H. Kim and M. H. Oh, J. Appl. Phys. 58 (1985) 3231.Google Scholar
  7. 7.
    W. G. Carlson and T. K. Gupta, ibid. 53 (1982) 5746.Google Scholar
  8. 8.
    F. Greuter, G. Blatter, F. Stucki and M. Rossinelli, in “Ceram. Transac.,” Vol. 3: Advances in Varistor Technology, edited by L.M. Levinson (American Ceramic Society, Westerville, OH, 1989) p. 31.Google Scholar
  9. 9.
    K. Eda, J. Appl. Phys. 49 (1978) 2964.Google Scholar
  10. 10.
    J. M. Driear, J. P. Guertin, T. O. Sokoly and L. B. Hackney, in “Advances in Ceramic,” Vol. 1, edited by L.M. Levinson (American Ceramic Society, Westerville, OH, 1981) p. 316.Google Scholar
  11. 11.
    G. E. Pike, S. R. Kurtz, P. L. Gourley, H. R. Phillip and L. M. Livinson, J. Appl. Phys. 57 (1985) 5512.Google Scholar
  12. 12.
    G. Blatter and F. Greuter, Phys. Rev. B 33 (1986) 3952.Google Scholar
  13. 13.
    C.-Y Shen, L. Wu and Y.-C Chen, Jpn. J. Appl. Phys. 32 (1993) 2043.Google Scholar
  14. 14.
    H.-H. Hng and K. M. Knowles, J. Amer. Ceram. Soc. 83 (2000) 2455.Google Scholar
  15. 15.
    H.-H. Hng, K. M. Knowles and P. A. Midgley, ibid. 84 (2001) 435.Google Scholar
  16. 16.
    C. S. Chen, C. T. Kuo, T. B. Wu and I. N. Lin, Jpn. J. Appl. Phys. 36 (1997) 1169.Google Scholar
  17. 17.
    C. T. Kuo, C. S. Chen and I. N. Lin, J. Amer. Ceram. Soc. 81 (1998) 2942.Google Scholar
  18. 18.
    Idem., ibid. 81 (1998) 2949.Google Scholar
  19. 19.
    J. K. Tsai and T. B. Wu, J. Appl. Phys. 76 (1994) 4817.Google Scholar
  20. 20.
    K. Mukae, K. Tsuda and I. Nagasawa, ibid. 50 (1979) 4475.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Chang-Shun Chen
    • 1
  1. 1.Department of Mechanical EngineeringHwa-Hsia College of Technology and Commerce, Taipei 235TaiwanROC

Personalised recommendations