BIT Numerical Mathematics

, Volume 40, Issue 4, pp 735–744 | Cite as

Error Bounds for Exponential Operator Splittings

  • Tobias Jahnke
  • Christian Lubich
Article

Abstract

Error bounds for the Strang splitting in the presence of unbounded operators are derived in a general setting and are applied to evolutionary Schrödinger equations and their pseudo-spectral space discretization.

Strang splitting Trotter product Schrödinger equation error bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. O. Dia and M. Schatzman, An estimate of the Kac transfer operator, J. Funct. Anal., 145 (1997), pp. 108-135.Google Scholar
  2. 2.
    A. Doumeki, T. Ichinose, and H. Tamura, Error bounds on exponential product formulas for Schrödinger operators, J. Math. Soc. Japan, 50 (1998), pp. 359-377.Google Scholar
  3. 3.
    B. Helffer, Around the transfer operator and the Trotter-Kato formula, in Partial Differential Operators and Mathematical Physics, M. Demuth et al., eds., Oper. Theor. Adv. Appl., Vol. 78, Birkhäuser, Basel, 1995, pp. 161-174.Google Scholar
  4. 4.
    T. Jahnke, Splittingverfahren für Schrödingergleichungen, Wiss. Arbeit für das Staatsexamen, Math. Institut, Univ. Tübingen, 1999.Google Scholar
  5. 5.
    R. Kozlov and B. Owren, Order reduction in operator splitting methods, Preprint Numerics 6/1999, University of Trondheim, 1999.Google Scholar
  6. 6.
    S. T. Kuroda and K. Kurata, Product formulas and error estimates, in Partial Differential Operators and Mathematical Physics, M. Demuth et al., eds., Oper. Theor. Adv. Appl., Vol. 78, Birkhäuser, Basel, 1995, pp. 213-220.Google Scholar
  7. 7.
    H. Neidhardt and V. A. Zagrebnov, On error estimates for the Trotter-Kato product formula, Letters Math. Phys., 44 (1998), pp. 169-186.Google Scholar
  8. 8.
    Dzh. L. Rogava, Error bounds for Trotter-type formulas for self-adjoint operators, Funct. Anal. Appl., 27 (1993), pp. 217-219.Google Scholar
  9. 9.
    Q. Sheng, Global error estimates for exponential splitting, IMA J. Numer. Anal., 14 (1994), pp. 27-56.Google Scholar
  10. 10.
    B. Sportisse and J. G. Verwer, A note on operator splitting in the stiff linear case, Tech. Report MAS-R 9830, CWI Amsterdam, 1998.Google Scholar
  11. 11.
    G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), pp. 506-517.Google Scholar
  12. 12.
    H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc., 10 (1959), pp. 545-551.Google Scholar

Copyright information

© Swets & Zeitlinger 2000

Authors and Affiliations

  • Tobias Jahnke
    • 1
  • Christian Lubich
    • 2
  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany
  2. 2.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations