Advertisement

General Relativity and Gravitation

, Volume 35, Issue 2, pp 189–200 | Cite as

The Einstein–Podolsky–Rosen Effect: Paradox or Gate?

  • Giuseppe Basini
  • Salvatore Capozziello
  • Giuseppe Longo
Article

Abstract

The Einstein–Podolsky–Rosen (EPR) paradox represents one of the most controversial aspects of quantum mechanics (QM). In this paper, we suggest that it can be solved by taking into account the fact that physical quantum phenomena can be extended backward in time (i.e. we take into account two arrows of time instead of one). We derive such a strong statement as a consequence of symmetries and conservation laws implying field equations which are invariant under time reversal. Our approach, violating Einstein's locality postulate, confirms QM predictions and explains the failure of Bell's inequalities.

Einstein-Podolsky-Rosen paradox wave function non-locality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Einstein, A., Podolsky, B., and Rosen, N. (1935). Phys. Rev. 47, 777.Google Scholar
  2. [2]
    Sakurai, J. J. (1994). Modern Quantum Mechanics, Revised Edition, Addison-Wesley Publ. Co., New York.Google Scholar
  3. [3]
    Bell, J. (1966). Rev. Modern Phys. 38, 447Google Scholar
  4. [4]
    Bell, J. (1965). Physics 1, 195.Google Scholar
  5. [5]
    Selleri, F. (1988). Quantum Mechanics versus Local Realism, Plenum Press, London.Google Scholar
  6. [6]
    D'Espagnat, B. (1971). Conceptual Foundations of Quantum Mechanics, W.A. Benjamin, Inc. Menlo Park, California.Google Scholar
  7. [7]
    Landau, L. D. and Lifshitz, E. M. (1960). Mécanique Quantique, MIR, Moscow.Google Scholar
  8. [8]
    Aspect, A., Grangier, P., and Roger, G. (1981). Phys. Rev. Lett. 47, 460Google Scholar
  9. [9]
    Aspect, A., Grangier, P., and Roger, G. (1982). Phys. Rev. Lett. 49, 91Google Scholar
  10. [10]
    Aspect, A., Dalibard, J., and Roger, G. (1982). Phys. Rev. Lett. 49, 1804.Google Scholar
  11. [11]
    Bohm, D. (1951). Quantum Mechanics, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  12. [12]
    Bohm, D. (1952). Phys. Rev. 85, 166Google Scholar
  13. [13]
    Bohm, D. and Aharonov, Y. (1957). Phys. Rev. 108, 1070Google Scholar
  14. [14]
    Bohm, D. and Bubb, J. (1966). Rev. Mod. Phys. 38, 453.Google Scholar
  15. [15]
    Nelson, E. (1985). Quantum Fluctuations, Princeton University Press., Princeton New Jersey.Google Scholar
  16. [16]
    Guerra, F. (1981). Phys. Rep. 77, 263.Google Scholar
  17. [17]
    Itzykson, C. and Zuber, J. B. (1980). Quantum Field Theory McGraw-Hill Book Co. Singapore.Google Scholar
  18. [18]
    Kaku, M. (1993). Quantum Field Theory, Oxford University Press, Oxford.Google Scholar
  19. [19]
    Birrell, N. D. and Davies, P. C. W. (1984). Quantum Fields in Curved Space, Cambridge University Press, Cambridge.Google Scholar
  20. [20]
    Landau, L. D. and Lifshitz, E. M. (1960). Théorie du Champ, MIR, Moscow.Google Scholar
  21. [21]
    Mandl, F. and Shaw, G. (1984). Quantum Field Theory, Wiley & Sons, Singapore.Google Scholar
  22. [22]
    von Borzeszkowski, H. and Mensky, M. B. (2000). Physics Lett. A 269, 204.Google Scholar
  23. [23]
    Jackson, J. D. (1975). Classical Electrodynamics, J. Wiley & Sons, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Giuseppe Basini
    • 1
  • Salvatore Capozziello
    • 2
    • 3
  • Giuseppe Longo
    • 4
    • 5
    • 6
  1. 1.Laboratori Nazionali di FrascatiINFNFrascatiItaly
  2. 2.Dipartimento di Fisica “E. R. Caianiello,”Universitá di SalernoItaly
  3. 3.Sez. di Napoli Gruppo Collegato di SalernoINFNBaronissi (Sa )Italy
  4. 4.Dipartimento di Scienze FisicheUniversitá di Napoli “Federico II,”NapoliItaly
  5. 5.Complesso Universitario di Monte S. AngeloNapoliItaly
  6. 6.Istituto Nazionale di AstrofisicaNapoliItaly

Personalised recommendations