Acta Applicandae Mathematica

, Volume 75, Issue 1–3, pp 125–132 | Cite as

Finite-Type Invariants of Cubic Complexes

  • S. Matveev
  • M. Polyak


The paper is for a general audience and may serve as a preliminary introduction to the theory of finite-type invariants.

cubic complexes finite-type invariants knots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Natan, D.: Polynomial invariants are polynomial, Math. Res. Lett. 2 (1995), 239–246.Google Scholar
  2. 2.
    Garoufalidis, S.: On finite-type 3-manifold invariants I, J. Knot Theory Ramifications 5 (1996), 441–462.Google Scholar
  3. 3.
    Garoufalidis, S., Goussarov, M. and Polyak, M.: Calculus of clovers and finite-type invariants of 3-manifolds, Geom. Topol. 5 (2001), 75–108.Google Scholar
  4. 4.
    Garoufalidis, S. and Levine, J.: Finite-type 3-manifold invariants, the mapping class groups, and blinks, J. Differential Geom. 47 (1977), 257–320.Google Scholar
  5. 5.
    Gusarov, M.: On n-equivalence of knots and invariants of finite degree, In: O. Viro (ed.), Topology of Manifolds and Varieties, Amer. Math. Soc., Providence, 1994, pp. 173–192.Google Scholar
  6. 6.
    Habiro, K.: Claspers and finite-type invariants of links, Geom. Topol. 4 (2000), 1–83.Google Scholar
  7. 7.
    Matveev, S.: Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zam. 42(2) (1987), 268–278 (Russian; English translation in Math. Notices Acad. Sci. USSR 42(2) (1987))Google Scholar
  8. 8.
    Ohtsuki, T.: Finite-type invariants of integral homology 3-spheres, J. Knot Theory Ramifications 5 (1996), 101–115.Google Scholar
  9. 9.
    Vassiliev, V.: Cohomology of knot spaces, In: V. I. Arnold (ed.), Theory of Singularities and its Applications, Amer. Math. Soc., Providence, 1990.Google Scholar
  10. 10.
    Prasolov, V. and Sossinsky, A.: Knots, Links, Braids, and Three-Dimensional Manifolds, MZNMO, Moscow, 1997 (Russian; there is an English edition).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Matveev
    • 1
  • M. Polyak
    • 2
  1. 1.Department of Algebra and GeometryChelyabinsk State UniversityChelyabinskRussia
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations