Genetica

, Volume 117, Issue 1, pp 3–16 | Cite as

The Nucleo-Mitochondrial Conflict in Cytoplasmic Male Sterilities Revisited

  • Françoise Budar
  • Pascal Touzet
  • Rosine De Paepe

Abstract

Cytoplasmic male sterility (CMS) in plants is a classical example of genomic conflict, opposing maternally-inherited cytoplasmic genes (mitochondrial genes in most cases), which induce male sterility, and nuclear genes, which restore male fertility. In natural populations, this type of sex control leads to gynodioecy, that is, the co-occurrence of female and hermaphroditic individuals within a population. According to theoretical models, two conditions may maintain male sterility in a natural population: (1) female advantage (female plants are reproductively more successful than hermaphrodites on account of their global seed production); (2) the counter-selection of nuclear fertility restorers when the corresponding male-sterility-inducing cytoplasm is lacking. In this review, we re-examine the model of nuclear-mitochondrial conflict in the light of recent experimental results from naturally occurring CMS, alloplasmic CMS (appearing after interspecific crosses resulting from the association of nuclear and cytoplasmic genomes from different species), and CMS plants obtained in the laboratory and carrying mitochondrial mutations. We raise new hypotheses and discuss experimental models that would take physiological interactions between cytoplasmic and nuclear genomes into account.

cytoplasmic male sterility mitochondrial mutation natural population nucleo-cytoplasmic conflict respiration sex determinism stress tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad, A.R., B.J. Mehrtens & S.A. Mackenzie, 1995. Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7: 271–285.Google Scholar
  2. Allen, R.D., 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049–1054.Google Scholar
  3. Alonso, C. & C.M. Herrera, 2001. Neither vegetative nor reproductive advantages account for high frequency of male-steriles in southern Spanish gynodioecious Daphne laureola (Thymelaeaceae). Am J. Bot. 88(6): 1016–1024.Google Scholar
  4. Arrieta-Montiel, M., A. Lyznik, M. Woloszynska, H. Janska, J. Tohme & S. Mackenzie, 2001. Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158(2): 851–864.Google Scholar
  5. Balk, J. & C.J. Leaver, 2001. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome ic release. Plant Cell 13(8): 1803–1818.Google Scholar
  6. Bannerot, H., L. Boulidard & Y. Chupeau, 1977. Unexpected difficulties met with the radish cytoplasm in Brassica oleracea. Eucarpia Cruciferae Newslett. 2: 16.Google Scholar
  7. Begu, D., P.V. Graves, C. Domec, G. Arselin, S. Litvak & A. Araya, 1990. RNA editing of wheat mitochondrial ATP synthase subunit 9: direct protein and cDNA sequencing. Plant Cell 2(12): 1283–1290.Google Scholar
  8. Belhassen, E., A. Atlan, D. Couvet, P.-H. Gouyon & F. Quétier, 1993. Mitochondrial genome of Thymus vulgaris L. (Labiate) is highly polymorphic between and among natural populations. Heredity 71: 462–472.Google Scholar
  9. Bellaoui, M., M. Grelon, G. Pelletier & F. Budar, 1999. The restorer Rfo gene acts post-translationally on the stability of the ORF138 Ogura CMS-associated protein in reproductive tissues of rapeseed cybrids. Plant Mol. Biol. 40(5): 893–902.Google Scholar
  10. Bellaoui, M., A. Martin-Canadell, G. Pelletier & F. Budar, 1998. Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol. Gen. Genet. 257(2): 177–185.Google Scholar
  11. Bentolila, S., A.A. Alfonso & M.R. Hanson, 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA 99(16): 10887–10892.Google Scholar
  12. Bergman, P., J. Edqvist, I. Farbos & K. Glimelius, 2000. Malesterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol. Biol. 42(3): 531–544.Google Scholar
  13. Boccara, M., C. Boué, M. Garmier, R. De Paepe & A.C. Boccara, 2001. IR thermography revealed the role of mitochondria in presymptomatic cooling during harpin-induced hypersensitive response. Plant J. 28(6): 663–670.Google Scholar
  14. Bonnett, H.T., W. Kofer, G. Hakansson & K. Glimelius, 1991. Mitochondrial involvement in petal and stamen development studied by sexual and somatic hybridization of Nicotiana species. Plant Sci. 80: 119–130.Google Scholar
  15. Boudry, P., M. Mörchen, P. Saumitou-Laprade, P. Vernet & H. Van Dijk, 1993. The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theoret. Appl. Genet. 87: 471–478.Google Scholar
  16. Boutin, V., R. Jean, M. Valero & P. Vernet, 1988. Gynodioecy in Beta maritima. Oecologia Plantarum 9: 61–66.Google Scholar
  17. Boutin-Stadler, V., P. Saumitou-Laprade, M. Valero, R. Jean & P. Vernet, 1989. Spatio-temporal variation of male sterile frequencies in two natural populations of Beta maritima. Heredity 63: 395–400.Google Scholar
  18. Brangeon, J., M. Sabar, S. Gutierres, B. Combettes, J. Bove, C. Gendy, P. Chetrit, C.C. Des Francs-Small, M. Pla, F. Vedel & R. De Paepe, 2000. Defective splicing of the first nad4 intron is associated with lack of several complex I subunits in the Nicotiana sylvestris NMS1 nuclear mutant. Plant J. 21(3): 269–280.Google Scholar
  19. Brown, G.G., 1999. Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. J. Hered. 90(3): 351–356.Google Scholar
  20. Budar, F. & G. Pelletier, 2001. Male sterility in plants: occurrence, determinism, significance and use. C R Acad. Sci. III 324(6): 543–550.Google Scholar
  21. Charlesworth, D., 1981. A further study of the problem of the maintenance of females in gynodioecious species. Heredity 46: 27–39.Google Scholar
  22. Chase, C.D., 1994. Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L. Curr. Genet. 25: 245–251.Google Scholar
  23. Conley, C.A. & M.R. Hanson, 1994. Tissue-specific expression in plant mitochondria. Plant Cell 6: 85–91.Google Scholar
  24. Cosmides, L.M. & J. Tooby, 1981. Cytoplasmic inheritance and intragenomic conflict. J. Theoret. Biol. 89: 83–129.Google Scholar
  25. Couvet, D., O. Ronce & C. Gliddon, 1998. Maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. Am. Natural. 152: 59–70.Google Scholar
  26. Cuguen, J., R. Wattier, P. Saumitou-Iaprade, D. Forcioli, M. Mörchen, H. Van-Dijk & P. Vernet, 1994. Gynodioecy and mitochondrial DNA polymorphism in natural populations of Beta vulgaris ssp. maritima. Genet. Sel. Evol. 26: 87–101.Google Scholar
  27. Cui, X., R.P. Wise & P.S. Schnable, 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272: 1334–1336.Google Scholar
  28. De Haan, A.A., M.P.J. Hundscheid & A. van Hinsberg, 1997a. Effects of CMS types and restorer alleles on plant performance on Plantago lanceola L.: an indication for cost of restoration. J. Evol. Biol. 10: 803–820.Google Scholar
  29. De Haan, A.A., H.P. Koelewijn, M.P.J. Hundscheid & J.M.M. Van Damme, 1997b. Dynamics of gynodioecy in Plantago lanceolata L. II. Mode of action and frequencies of restorer alleles. Genetics 147: 1317–1328.Google Scholar
  30. De Haan, A.A., A.C. Mateman, P.J. Van Dijk & J.M.M. Van Damme, 1997c. New CMS types in Plantago lanceolata and their relatedness. Theoret. Appl. Genet. 94: 539–548.Google Scholar
  31. De Paepe, R., A. Forchioni, P. Chetrit & F. Vedel, 1993. Specific mitochondrial proteins in pollen: presence of an additional ATP synthase beta subunit. Proc. Natl. Acad. Sci. USA 90(13): 5934–5938.Google Scholar
  32. Delannay, X., 1978. La gynodioecie chez les angiospermes. Natural. Belges 59: 223–235.Google Scholar
  33. Delannay, X., P.H. Gouyon & G. Valdeyron, 1981. Mathematical study of the evolution of gynodioecy with cytoplasmic inheritance under the effect of a nuclear gene. Genetics 99: 169–181.Google Scholar
  34. Desplanque, B., F. Viard, D. Forcioli, J. Bernard, J. Saumitou-Laprade, J. Cuguen & H. Van Dijk, 2000. The linkage disequilibrium between cpDNA and mtDNA haplotypes in Beta vulgaris subsp maritima (L.): the usefulness of both genomes for population genetic studies. Mol. Ecol. 9: 141–154.Google Scholar
  35. Dewey, R.E., D.H. Timothy & C.S.I.I.I. Levings, 1987. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc. Natl. Acad. Sci. USA 84: 5374–5378.Google Scholar
  36. Ducos, E., P. Touzet & M. Boutry, 2001. The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J. 26(2): 171–180.Google Scholar
  37. Dudle, D.A., P. Mutikainen & L.F. Delph, 2001. Genetics of sex determination in the gynodioecious species Lobelia siphilitica: evidence from two populations. Heredity 86(Pt 3): 265–276.Google Scholar
  38. Dufour, E., J. Boulay, V. Rincheval & A. Sainsard-Chanet, 2000. A causal link between respiration and senescence in Podospora anserina. Proc. Natl. Acad. Sci. USA 97(8): 4138–4143.Google Scholar
  39. Duranceau, M., J. Ghasghaie & E. Brugnoli, 2001. Carbon isotope discrimination during photosynthesis and dark respiration in intact leaves of Nicotiana sylvestris: comparisons between wild type and mitochondrial mutant plants. Aust. J. Plant Physiol. 28: 65–71.Google Scholar
  40. Farbos, I., A. Mouras, A. Bereterbide & K. Glimelius, 2001. Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. Plant J. 26(2): 131–142.Google Scholar
  41. Frank, S.A., 1989. The evolutionary dynamics of cytoplasmic male sterility. Am. Natural. 133: 345–376.Google Scholar
  42. Frank, S.A., 2000. Polymorphism of attack and defense. Trends Ecol. Evol. 15(4): 167–171.Google Scholar
  43. Garmier, M., C. Christelle Dutilleul, P. Chétrit, M. Martine Boccara & R. Rosine De Paepe, 2002. Changes in antioxidant expression and harpin-induced hypersensitive response in a Nicotiana sylvestris mitochondrial mutant. Plant Physiol. Biochem. 40(6–8): 561–566.Google Scholar
  44. Gigord, L., C. Lavigne, J. Shykoff & A. Atlan, 1998. No evidence of local adaptation between cytoplasmic male sterility and nuclear restorer genes in the gynodioecious species Thymus vulgaris L. Heredity 81: 156–163.Google Scholar
  45. Gouyon, P.H. & D. Couvet, 1987. A conflict between two sexes, females and hermaphrodites, pp. 245–260 in The Evolution of Sex and its Consequences, edited by S.C. Stearns. Birkhäuser, Basel, Boston.Google Scholar
  46. Gouyon, P.H., F. Vichot & J.M.M. Van Damme, 1991. Nuclearcytoplasmic male sterility: single point equilibria versus limit cycles. Am. Natural. 137: 498–514.Google Scholar
  47. Gutierres, S., C. Lelandais, R. De Paepe, F. Vedel & P. Chétrit, 1997. A mitochondrial sub-stoichiometric orf87-nad3-nad1 exonA cotranscrition unit present in Solanaceae was amplified in the genus Nicotiana. Curr. Genet. 31: 55–62.Google Scholar
  48. Hakansson, G. & K. Glimelius, 1991. Extensive nuclear influence on mitochondrial transcription and genome structure in malefertile and male-sterile alloplasmic Nicotiana materials. Mol. Gen. Genet. 229(3): 380–388.Google Scholar
  49. Hanson, M.R., R.K. Wilson, S. Bentolila, R.H. Kohler & H.C. Chen, 1999. Mitochondrial gene organization and expression in petunia male fertile and sterile plants. J. Hered. 90(3): 362–368.Google Scholar
  50. Hurst, L.D., A. Atlan & B.O. Bengtsson, 1996. Genetic conflicts. Quart. Rev. Biol. 71(3): 317–364.Google Scholar
  51. Iwabuchi, M., J. Koizuka & K. Shimamoto, 1993. Processing followed by complete editing of an altered atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J. 12: 1437–1446.Google Scholar
  52. Iwabuchi, M., N. Koizuka, H. Fujimoto, T. Sakai & J. Imamura, 1999. Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138. Plant Mol. Biol. 39: 183–1Google Scholar
  53. Kadowaki, K., T. Suzuki & S. Kazama, 1990. A chimeric gene containing the 5′ portion of atp6 is associated with cytoplasmic male-sterility of rice. Mol. Gen. Genet. 224(1): 10–16.Google Scholar
  54. Karpova, O.V. & K.J. Newton, 1999. A partially assembled Complex I in NAD4-deficient mitochondria of maize. Plant J. 17: 511–521.Google Scholar
  55. Kaul, M.L.H., 1988. Male Sterility in Higher Plants. Springer, Berlin.Google Scholar
  56. Kitagawa, J., U. Posluszny, J.M. Gerrath & D.J. Wolyn, 1994. Developmental and morphological analyses of homeotic cytoplasmic male sterile and fertile carrot flowers. SexPlant Reprod. 7: 41–50.Google Scholar
  57. Koelewijn, H.P. & J.M.M. Van Damme, 1995. Genetics of male sterility in gynodioecious Plantago coronopus. I. Cytoplasmic variation. Genetics 139: 1749–1758.Google Scholar
  58. Koelewijn, H.P. & J.M.M. Van Damme, 1995. Genetics of male sterility in gynodioecious Plantago coronopus. II. Nuclear genetic variation. Genetics 139: 1759–1775.Google Scholar
  59. Koizuka, N., H. Fujimoto, T. Sakai & J. Imamura, 1998. Translational control of ORF125 expression by a radish fertilityrestoration gene in Brassica napus kosena CMS cybrids, pp. 83–86 in Plant Mitochondria: From Gene to Function, edited by. I.M. Moller, P. Gardestrom, K. Glimelius & E. Glaser. Backhuys Publishers, Leiden.Google Scholar
  60. Koizuka, N., R. Imai, M. Iwabuchi, T. Sakai & J. Imamura, 2000. Genetic analysis of fertility restoration and accumulation of ORF125 mitochondrial protein in the kosena radish (Raphanus sativus cv. Kosena) and a Brassica napus restorer line. Theoret. Appl. Genet. 100: 949–955.Google Scholar
  61. L'Homme, Y., R.J. Stahl, X.-Q. Li, A. Hameed & G.G. Brown, 1997. Brassica nap cytoplasmic male sterility is associated with expresion of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr. Genet. 31: 325–335.Google Scholar
  62. Lalanne, E., C. Mathieu, F. Vedel & R. De Paepe, 1998. Tissuespecific expression of genes encoding isoforms of the mitochondrial ATPase beta subunit in Nicotiana sylvestris. Plant Mol. Biol. 38(5): 885–888.Google Scholar
  63. Landgren, M., M. Zetterstrand, E. Sundberg & K. Glimelius, 1996. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3′ of the atp6 gene and a 32 kDa protein. Plant Mol. Biol. 32: 879–890.Google Scholar
  64. Laporte, V., F. Viard, G. Béna, M. Valero & J. Cuguen, 2001. The spatial structure of sexual and cytonuclear polymorphism in the gynodioecious Beta vulgaris ssp. maritima: I/at a local scale. Genetics 157: 1699–1710.Google Scholar
  65. Laser, B., G. Oettler & U. Kück, 1995. RNA editing of the mitochondrial atpA/atp9 co-transcript of triticale, carrying the timopheevi cytoplasmic male sterility cytoplasm from wheat. Plant Physiol. 107: 663–664.Google Scholar
  66. Laver, H.K., S.J. Reynolds, F. Moneger & C.J. Leaver, 1991. Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J. 1(2): 185–193.Google Scholar
  67. Lee, S.L.J. & H.E. Warmke, 1979. Organelle size and number in fertile and T-cytoplasmic male sterile corn. Am. J. Bot. 66: 141–148.Google Scholar
  68. Lefebvre, A., R. Scalla & P. Pfeiffer, 1990. The double-stranded RNA associated with the '447' cytoplasmic male sterility in Vicia faba is packaged together with its replicase in cytoplasmic membranous vesicles. Plant Mol. Biol. 14(4): 477–490.Google Scholar
  69. Levings, C.S.R., 1993. Thoughts on cytoplasmic male sterility in maize. Plant Cell 5: 1285–1290.Google Scholar
  70. Li, X.Q., M. Jean, B.S. Landry & G.G. Brown, 1998. Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc. Natl. Acad. Sci. USA 95: 10032–10037.Google Scholar
  71. Liu, F., X. Cui, H.T. Horner, H. Weiner & P.S. Schnable, 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13(5): 1063–1078.Google Scholar
  72. Mackenzie, S.A. & S. Chase, 1990. Fertility restoration is associated with a loss of a portion of the mitochondrial genome in cytoplasmic male sterile common bean. Plant Cell 2: 905–912.Google Scholar
  73. Manicacci, D., A. Atlan & D. Couvet, 1997. Spatial structure of nuclear factors involved in sex determination in the gynodioecious Thymus vulgaris L. J. Evol. Biol. 10: 889–907.Google Scholar
  74. Manicacci, D., D. Couvet, E. Belhassen, P.-H. Gouyon & A. Atlan, 1996. Founder effects and sex ratio in the gynodioecious Thymus vulgaris L. Mol. Ecol. 5: 63–72.Google Scholar
  75. Marienfeld, J.R. & K.J. Newton, 1994. The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 mitochondrial gene and is associated with reduced complex I function. Genetics 138(3): 855–863.Google Scholar
  76. Marienfeld, J.R., M. Unseld, P. Brandt & A. Brennicke, 1997. Mosaic open reading frames in the Arabidopsis thaliana mitochondrial genome. Biol. Chem. 378(8): 859–862.Google Scholar
  77. Maxwell, D.P., Y. Wang & L. McIntosh, 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA 96(14): 8271–8276.Google Scholar
  78. McCauley, D.E., M.S. Olson, S.N. Emery & D.R. Taylor, 2000. Population and structure influences sex ratio evolution in a gynodioecious plant. Am. Natural. 155(6): 814–819.Google Scholar
  79. McCauley, D.E. & D.R. Taylor, 1997. Local population structure and sex ratio: evolution in gynodioecious plants. Am. Natural. 150(3): 406–419.Google Scholar
  80. Menassa, R., Y. L'Homme & G.G. Brown, 1999. Posttranscriptional and developmental regulation of a CMSassociated mitochondrial gene region by a nuclear restorer gene. Plant J. 17(5): 491–499.Google Scholar
  81. Moller, I.M., 1986. Membrane-bound NAD(P)H dehydrogenases in plant mitochondria. Physiol. Plant 67: 517–520.Google Scholar
  82. Monéger, F., P. Mandaron, M.F. Niogret, G. Freyssinet & R. Mache, 1992. Expression of mitochondrial genes during microsporogenesis in maize. Plant Physiol. 99: 396–400.Google Scholar
  83. Monéger, F., C.J. Smart & C.J. Leaver, 1994. Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J. 13: 8–17.Google Scholar
  84. Newton, K.J. & E.H.J. Coe, 1986. Mitochondrial DNA changes in abnormal growth (non-chromosomal stripe) mutants of maize. Proc. Natl. Acad. Sci. USA 83: 7363–7366.Google Scholar
  85. Newton, K.J., C. Knudsen, S. Gabay-Laughnan & J.R. Laughnan, 1990. An abnormal growth mutant in maize has a defective mitochondrial cytochrome oxidase gene. Plant Cell 2(2): 107–113.Google Scholar
  86. Nivison, H.T. & M.R. Hanson, 1989. Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia. Plant Cell 1(11): 1121–1130.Google Scholar
  87. Op den Camp, R.G. & C. Kuhlemeier, 1997. Aldehyde dehydrogenase in tobacco pollen. Plant Mol. Biol. 35(3): 355–365.Google Scholar
  88. Palmer, J.D., K.L. Adams, Y. Cho, C.L. Parkinson, Y.L. Qiu & K. Song, 2000. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl. Acad. Sci. USA 97(13): 6960–6966.Google Scholar
  89. Pannell, J., 1997. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51(1): 10–20.Google Scholar
  90. Pla, M., C. Mathieu, R. De Paepe, P. Chetrit & F. Vedel, 1995. Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant. Mol. Gen. Genet. 248(1): 79–88.Google Scholar
  91. Poot, P., 1997. Reproductive allocation and resource compensation in male-sterile and hermaphroditic plants of Plantago lanceolata (Plantaginaceae). Am. J. Bot. 84(9): 1256–1265.Google Scholar
  92. Purvis, A.C., 1997. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant 100: 165–170.Google Scholar
  93. Rasmusson, A.G., V.V. Heiser, E. Zabaleta, A. Brennicke & L. Grohmann, 1998. Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. Biochim. Biophys. Acta 1364(2): 101–111.Google Scholar
  94. Sabar, M., Y. de Kouchkovsky, S. Gutierres, F. Vedel & R. De Paepe, 1998. Mitochondrial complex I dysfunction: compatibility with survival and reproduction in cytoplasmic and nuclear male-sterile mutants of Nicotiana sylvestris, pp. 87–90 in Proc. 5th Intern. Congress Plant Mitochondria: from Gene to Function, edited by I.M. Moller, P. Gardestrom, K. Glimelius & E. Glaser. Backhuys Publishers.Google Scholar
  95. Sabar, M., R. De Paepe & Y. de Kouchkovsky, 2000. Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol. 124(3): 1239–1250.Google Scholar
  96. Sarria, R., A. Lyznik, C.E. Vallejos & S.A. Mackenzie, 1998. A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell 10: 1217–1228.Google Scholar
  97. Saumitou-Laprade, P., J. Cuguen & P. Vernet, 1994. Cytoplasmic male sterility in plants: molecualr evidence and the nucleocytoplasmic conflict. Trends Ecol. Evol. 9: 431–435.Google Scholar
  98. Saumitou-Laprade, P., G.J.A. Rouwendal, J. Cuguen, F.A. Krens & G. Michaelis, 1993. Different CMS sources found in Beta vulgaris ssp. maritima: mitochondrial variability in wild populations revealed by a rapid screening procedure. Theoret. Appl. Genet. 85: 529–535.Google Scholar
  99. Schnable, P.S. & R.P. Wise, 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3(5): 175–180.Google Scholar
  100. Siedow, J.N. & A.L. Umbach, 1995. Plant mitochondrial electron transfer and molecular biology. Plant Cell 7: 821–831.Google Scholar
  101. Small, I.D. & N. Peeters, 2000. The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25: 46–47.Google Scholar
  102. Smart, C.J., F. Monéger & C.J. Leaver, 1994. Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 6: 811–825.Google Scholar
  103. Song, J. & C. Hedgcoth, 1994. Influence of nuclear background on transcription of a chimeric gene (orf256) and coxI in fertile and cytoplasmic male sterile wheats. Genome 37(2): 203–209.Google Scholar
  104. Tadege, M. & C. Kuhlemeier, 1997. Aerobic fermentation during tobacco pollen development. Plant Mol. Biol. 35(3): 343–354.Google Scholar
  105. Tang, H.V., D.R. Pring, L.C. Shaw, R.A. Salazar, F.R. Muza, B. Yan & K.F. Schertz, 1996. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. Plant J. 10(1): 123–133.Google Scholar
  106. Thompson, J.D., D. Manicacci & T.M., 1998. Thirty-five years of thyme: a tale of two polymorphisms. BioScience 48(10): 805–815.Google Scholar
  107. Thompson, J.D. & M. Tarayre, 2000. Exploring the genetic basis and proximate causes of female fertility advantage in gynodioecious Thymus vulgaris. Evolution 54(5): 1510–1520.Google Scholar
  108. Van Damme, J.M.M., 1983. Gynodioecy in Plantago lanceolata L. II. Inheritance of three male sterility types. Heredity 50: 253–273.Google Scholar
  109. Van Damme, J.M.M. & W. Van Delden, 1982. Gynodioecy in Plantago lanceolata L. I. Polymorphism for plasmon type. Heredity 49: 303–318.Google Scholar
  110. Van Damme, J.M.M. & W. Van Delden, 1984. Gynodioecy in Plantago lanceolata L. IV. Fitness components of sex types in different life cycle stages. Evolution 38: 1326–1336.Google Scholar
  111. Van der Kley, F.K., 1955. Male sterility and its importance in breeding heterosis varieties. Euphytica 3: 117–124.Google Scholar
  112. Wagner, A.M., 1995. A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. FEBS Lett. 368: 339–342.Google Scholar
  113. Wagner, A.M. & A.L. Moore, 1997. Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci. Rep. 17(3):319–333.Google Scholar
  114. Wen, L.Y. & C.D. Chase, 1999. Mitochondrial gene expression in developing male gametophytes of male-fertile and S male-sterile maize. Sex. Plant Reprod. 11: 323–330.Google Scholar
  115. Wen, L. & C.D. Chase, 1999. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in malefertile and S male-sterile maize. Curr. Genet. 35(5): 521–526.Google Scholar
  116. Werren, J.H. & L.W. Beukeboom, 1998. Sex determination, sex ratios, and genetic conflict. Ann. Rev. Ecol. Syst. 29: 233–261.Google Scholar
  117. Wise, R.P., C.R. Bronson, P.S. Schnable & H.T. Horner, 1999a. The genetics, pathology and molecular biology of T-cytoplasm male sterility in maize. Adv. Agron. 65: 79–131.Google Scholar
  118. Wise, R.P., K. Gobelman-Werner, D. Pei, C.L. Dill & P.S. Schnable, 1999b. Mitochondrial transcript processing and restoration of male fertility in T-cytoplasm maize. J. Hered. 90(3): 380–385.Google Scholar
  119. Wolstenholme, D.R. & C.M.R. Fauron, 1995. Mitochondrial genome organization, pp. 1–59 in Advances in Cellular and Molecular Biology of Plants: The Molecular Biology of Plant Mitochondria. Kluwer Academic Publishers, Boston, 3.Google Scholar
  120. Yamagishi, H. & T. Terachi, 1996. Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. III. Distribution of Ogura-type cytoplasm among Japanese wild radishes and Asian radish cultivars. Theoret. Appl. Genet. 93: 325–332.Google Scholar
  121. Yamagishi, H. & T. Terachi, 1997. Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. IV. Ogura-type cytoplasm found in the wild radish, Raphanus raphanistrum. Plant Breed. 116: 323–329.Google Scholar
  122. Yamagishi, H. & T. Terachi, 2001. Intra-and Inter-specific variations in the mitochondrial gene orf138 of Ogura-type male sterile cytoplasm from Raphanus sativus and Raphanus raphanistrum. Theoret. Appl. Genet. 103: 725–732.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Françoise Budar
    • 1
  • Pascal Touzet
    • 2
  • Rosine De Paepe
    • 3
  1. 1.Station de Génétique et d’Amélioration des PlantesINRAVersailles CedexFrance
  2. 2.Université de Lille IVilleneuve d’Asq CedexFrance
  3. 3.Institut de Biotechnologie des PlantesUniversité Paris-SudOrsayFrance

Personalised recommendations