Journal of Chemical Ecology

, Volume 24, Issue 1, pp 23–36

Inter- and Intraspecific Variations in Production of Spines and Phenols in Prosopis caldenia and Prosopis flexuosa

  • Jorge M. Pisani
  • Roberto A. Distel


In central Argentina the leguminous tree Prosopis caldenia is more abundant in sites of relatively high productivity (lowlands), whereas P. flexuosa is more abundant in sites of relatively low productivity (slopes and uplands). Based upon current antiherbivore defense theory, we predicted: (1) a higher investment in defenses in P. flexuosa than in P. caldenia, and (2) that limitations in resources would result in an increase of the defenses in both species. Our approach for testing these predictions was to estimate leaf phenol concentration and spinescence in adults (field study) and seedlings (greenhouse study) of both species growing at different levels of resource availability. In adult plants, the concentration of phenols was higher (P < 0.01) in P. flexuosa than in P. caldenia, but the opposite relationship was observed in seedlings. The amount of biomass invested in spines was similar (P > 0.10) in both species, whereas spine density was higher (P < 0.05) in P. caldenia than in P. flexuosa. In both species, limitations in resources did not result (P > 0.05) in increases in leaf phenol concentration, amount of biomass invested in spines, spine length, or spine density, except for the increase (P < 0.05) of spine density in seedlings of P. caldenia at low water and nutrient availability. In general, our results did not support current hypotheses on the production of antiherbivore defenses. It is argued that factors such as herbivore behavior (e.g., habitat selection, trampling, branch breakage) and alternative sinks for carbon (e.g., N2 fixation, carbohydrate reserves), in addition to resource availability in evolutionary and ecological time, should be considered for a more complete understanding of the inter- and intraspecific variations in the production of both physical and chemical antiherbivore defenses.

Antiherbivore defenses physical defenses chemical defenses phenols spines Prosopis caldenia Prosopis flexuosa Argentina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BÓo, R. M., and PelÁez, D. V. 1991. Ordenamiento y clasificación de la vegetación en un área del sur del Distrito del Caldén. Bol. Soc. Argent. Bot. 27:135–141.Google Scholar
  2. BÓo, R. M., PelÁez, D. V., Bunting, S. C., Mayor, M. D., and ElÍa, O. R. 1997. Fire effects on woody species in central semi-arid Argentina. J. Arid Environ. 35:87–94.Google Scholar
  3. Bryant, J. P., Chapin, F. S., III, and Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.Google Scholar
  4. Bryant, J. P., Kuropat, P. J., Reichardt, P. B., and Clausen, T. P. 1991. Controls over the allocation of resources by woody plants to chemical antiherbivore defense, pp. 83–102, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.Google Scholar
  5. Burkart, A. 1976. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J. Arnold Arbore. 57:217–525.Google Scholar
  6. Cabrera, A. L. 1976. Regiones Fitogeográficas Argentinas, pp. 1–85, in Enciclopedia Argentina de Agricultura y Jardinerá, Tomo II. ACME, Buenos Aires.Google Scholar
  7. Cano, E. 1988. Pastizales Naturales de La Pampa: Descripción de las Especies más Importantes, Tomo I. Publicaciones CREA, Buenos Aires, 425 pp.Google Scholar
  8. Coley, P. D., Bryant, J. P., and Chapin, F. S., III. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.Google Scholar
  9. Distel, R. A., and PelÁez, D. V. 1985. Fenología de algunas especies del distrito del Caldén (Prosopis caldenia Burk.). IDIA Sept.–Dec.: 35–40.Google Scholar
  10. Dudt, J. F., and Shure, D. J. 1994. The influence of light and nutrients on foliar phenolics and insects herbivory. Ecology 75:86–98.Google Scholar
  11. Feeny, P. P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.Google Scholar
  12. Hagerman, A. E. 1988. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 14:453–461.Google Scholar
  13. Herms, D. A., and Mattson, W. J. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67:283–335.Google Scholar
  14. Janzen, D. H. 1981. The defenses of legumes against herbivores, pp. 951–977, in R. M. Polhill and P. H. Raven (eds.). Advances in Legume Systematics. Royal Botanic Garden, Kew, UK.Google Scholar
  15. Lyon, C. K., Gumbmann, M. R., and Becker, R. 1988. Value of mesquite leaves as forage. J. Sci. Food Agric. 44:111–117.Google Scholar
  16. Martin, J. S., and Martin, M. M. 1982. Tannin assay in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205–211.Google Scholar
  17. McKee, K. L. 1995. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: Response to light and nutrient availability. Am. J. Bot. 82:299–307.Google Scholar
  18. Milton, S. J. 1991. Plant spinescence in arid southern Africa: Does moisture mediate selection by mammals? Oecologia 87:279–287.Google Scholar
  19. Myers, J. H., and Bazely, D. 1991. Thorns, spines, prickles, and hairs: Are they stimulated by herbivory and do they deter herbivores? pp. 325–344, in D. W. Tallamy and M. J. Raupp (eds.). Phytochemical Induction by Herbivores. John Wiley & Sons, New York.Google Scholar
  20. Palo, R. T., Gowda, J., and HÖgberg, P. 1993. Species height and root symbiosis, two factors influencing antiherbivore defense of woody plants in East African savanna. Oecologia 93:322–326.Google Scholar
  21. Pisani, J. M., Distel, R. A., and FernÁndez, O. A. 1995. Relaciones entre la preferencia dietaria de la cabra y las defensas antiherbívoro presentes en Prosopis caldenia y Prosopis flexuosa. Rev. Arg. Prod. Anim. 15:208–210.Google Scholar
  22. Price, M. L., and Butler, L. G. 1977. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 25:1268–1273.Google Scholar
  23. Rhoades, D. F., and Cates, R. G. 1976. Toward a general theory of plant antiherbivore chemistry. Recent Adv. Phytochem. 10:168–213.Google Scholar
  24. Rousi, M., Tahvanainen, J., and Uotila, I. 1991. A mechanism of resistance to hare browsing in winter-dormant European white birch (Betula pendula). Am. Nat. 137:64–82.Google Scholar
  25. Shearer, G., Kohl, D. H., Virginia, R. A., Bryan, B. A., Skeeters, J. L., Nilsen, E. T., Sharifi, M. R., and Rundel, P. W. 1983. Estimates of N2 fixation from the natural abundance of 15N in Sonoran Desert Ecosystems. Oecologia 56:365–373.Google Scholar
  26. Skogsmyr, I., and FagerstrÖm, T. 1992. The cost of anti-herbivore defence: An evaluation of some ecological and physiological factors. Oikos 64:451–457.Google Scholar
  27. Snedecor, G. W., and Cochran, W. G. 1980. Statistical Methods. Iowa State University Press, Ames.Google Scholar
  28. Wright, H. A., Bunting, S. C., and Neunschwander, L. F. 1976. Effect of fire on honey mesquite. J. Range Manage. 29:467–471.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Jorge M. Pisani
    • 1
  • Roberto A. Distel
    • 1
  1. 1.Departamento de Agronomía–CERZOS/CONICETUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations