Advertisement

Foundations of Physics

, Volume 32, Issue 12, pp 1891–1901 | Cite as

The Maximum Tension Principle in General Relativity

  • G. W. Gibbons
Article

Abstract

I suggest that classical General Relativity in four spacetime dimensions incorporates a Principal of Maximal Tension and give arguments to show that the value of the maximal tension is \(\frac{{c^4 }}{{4G}}\). The relation of this principle to other, possibly deeper, maximal principles is discussed, in particular the relation to the tension in string theory. In that case it leads to a purely classical relation between G and the classical string coupling constant α′ and the velocity of light c which does not involve Planck's constant.

relativity gravitational tension fundamental units 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1970).Google Scholar
  2. 2.
    O. Lodge, The Ether of Space (Harper, 1909).Google Scholar
  3. 3.
    A. Comtet and G. W. Gibbons, Nucl. Phys. B 299, 719–733 (1988).Google Scholar
  4. 4.
    A. Einstein and N. Rosen, Phys. Rev. 49, 401 (1936).Google Scholar
  5. 5.
    W. Israel and K. Khan, Nuovo Cimento 33, 331–344 (1964).Google Scholar
  6. 6.
    G. W. Gibbons, Comm. Math. Phys. 35, 13–23 (1974).Google Scholar
  7. 7.
    G. W. Gibbons, Proc. Roy. Soc. Lond. A 372, 535–538 (1980).Google Scholar
  8. 8.
    H. F. Dowker and S. N. Thambyahpillai, “Many accelerating black holes,” gr-qc/ 0105044.Google Scholar
  9. 9.
    G. W. Gibbons and M. J. Perry, Phys. Rev. D 22, 313 (1980).Google Scholar
  10. 10.
    R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304 (1986).Google Scholar
  11. 11.
    G. Veneziano, Europhys. Lett. 2, 199 (1986).Google Scholar
  12. 12.
    M. J. Duff, L. B. Okun, and G. Veneziano, “Trialogue on the number of fundamental constants,” arXiv:physics/0110060.Google Scholar
  13. 13.
    J. Scherk, Rev. Mod. Phys. 47, 123–164 (1975).Google Scholar
  14. 14.
    M. Planck, S.-B Preiss. Akad. Wiss. (1899), pp. 440–480, Ann. Phys. (Leipzig) 1, 69–112 (1900).Google Scholar
  15. 15.
    G. J. Stoney, Phil. Mag. 11,v (1881).Google Scholar
  16. 16.
    F. P. Schuller, Ann. Phys. (N.Y.) 299, 174–207 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • G. W. Gibbons
    • 1
  1. 1.D.A.M.T.P.Cambridge UniversityCambridgeUK

Personalised recommendations