Neurochemical Research

, Volume 28, Issue 2, pp 215–223

White Matter Injury Following Systemic Endotoxemia or Asphyxia in the Fetal Sheep

  • Carina Mallard
  • Anna-Karin Welin
  • Donald Peebles
  • Henrik Hagberg
  • Ingemar Kjellmer
Article

Abstract

White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.

Asphyxia periventricular leukomalacia endotoxemia oligodendrocyte infection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Fujimoto, S., Yamaguchi, N., Togari, H., Wada, Y., and Yokochi, K. 1994. Cerebral palsy of cystic periventricular leukomalacia in low-birth-weight infants. Acta Paediatr. 83:397–401.PubMedGoogle Scholar
  2. 2.
    Volpe, J. J. 1998. Brain injury in the premature infant: Overview of clinical aspects, neuropathology, and pathogenesis. Semin. Pediatr. Neurol. 5:135–151.PubMedGoogle Scholar
  3. 3.
    Banker, B. Q. and Larroche, J.-C. 1962. Periventricular leukomalacia of infancy: A form of neonatal anoxic encephalopathy. Arch. Neurol. 7:386–410.PubMedGoogle Scholar
  4. 4.
    Takashima, S. and Tanaka, K. 1978. Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch. Neurol. 35:11–16.PubMedGoogle Scholar
  5. 5.
    De Reuck, J. L. 1984. Cerebral angioarchitecture and perinatal brain lesions in premature and full-term infants. Acta Neurol. Scand. 70:391–395.PubMedGoogle Scholar
  6. 6.
    Back, S. A., Luo, N. L., Borenstein, N. S., Levine, J. M., Volpe, J. J., and Kinney, H. C. 2001. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci. 21:1302–1312.PubMedGoogle Scholar
  7. 7.
    Dammann, O. and Leviton, A. 1998. Infection remote from the brain, neonatal white matter damage, and cerebral palsy in the preterm infant. Semin. Pediatr. Neurol. 5:190–201.PubMedGoogle Scholar
  8. 8.
    Leviton, A. 1993. Preterm birth and cerebral palsy: Is tumor necrosis factor the missing link? Dev. Med. Child Neurol. 35:553–558.PubMedGoogle Scholar
  9. 9.
    Deguchi, K., Oguchi, K., and Takashima, S. 1997. Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr. Neurol. 16:296–300.PubMedGoogle Scholar
  10. 10.
    Nelson, K. B., Dambrosia, J. M., Grether, J. K., and Phillips, T. M. 1998. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann. Neurol. 44:665–675.PubMedGoogle Scholar
  11. 11.
    Reddy, K., Mallard, C., Guan, J., Marks, K., Bennet, L., Gunning, M., Gunn, A., Gluckman, P., and Williams, C. 1998. Maturational change in the cortical response to hypoperfusion injury in the fetal sheep. Pediatr. Res. 43:674–682.PubMedGoogle Scholar
  12. 12.
    Gilles, F. H., Averill, D. R., Jr., and Kerr, C. S. 1977. Neonatal endotoxin encephalopathy. Ann. Neurol. 2:49–56.PubMedGoogle Scholar
  13. 13.
    Young, R. S., Yagel, S. K., and Towfighi, J. 1983. Systemic and neuropathologic effects of E. coli endotoxin in neonatal dogs. Pediatr. Res. 17:349–353.PubMedGoogle Scholar
  14. 14.
    Yoon, B. H., Kim, C. J., Romero, R., Jun, J. K., Park, K. H., Choi, S. T., and Chi, J. G. 1997. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am. J. Obstet. Gynecol. 177:797–802.PubMedGoogle Scholar
  15. 15.
    Debillon, T., Gras-Leguen, C., Verielle, V., Winer, N., Caillon, J., Roze, J. C., and Gressens, P. 2000. Intrauterine infection induces programmed cell death in rabbit periventricular white matter. Pediatr. Res. 47:736–742.PubMedGoogle Scholar
  16. 16.
    Mallard, E. C., Gunn, A. J., Williams, C. E., Johnston, B. M., and Gluckman, P. D. 1992. Transient umbilical cord occlusion causes hippocampal damage in the fetal sheep. Am. J. Obstet. Gynecol. 167:1423–1430.PubMedGoogle Scholar
  17. 17.
    Mallard, E. C., Williams, C. E., Gunn, A. J., Gunning, M. I., and Gluckman, P. D. 1993. Frequent episodes of brief ischemia sensitize the fetal sheep brain to neuronal loss and induce striatal injury. Pediatr. Res. 33:61–65.PubMedGoogle Scholar
  18. 18.
    Gilland, E., Bona, E., and Hagberg, H. 1998. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J. Cereb. Blood Flow Metab. 18:222–228.PubMedGoogle Scholar
  19. 19.
    Braun, P. E., Sandillon, F., Edwards, A., Matthieu, J. M., and Privat, A. 1988. Immunocytochemical localization by electron microscopy of 2′3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J. Neurosci. 8:3057–3066.PubMedGoogle Scholar
  20. 20.
    Paneth, N., Rudelli, R., Monte, W., Rodriguez, E., Pinto, J., Kairam, R., and Kazam, E. 1990. White matter necrosis in very low birth weight infants: Neuropathologic and ultrasonographic findings in infants surviving six days or longer. J. Pediatr. 116:975–984.PubMedGoogle Scholar
  21. 21.
    Duggan, P. J., Maalouf, E. F., Watts, T. L., Sullivan, M. H., Counsell, S. J., Allsop, J., Al-Nakib, L., Rutherford, M. A., Battin, M., Roberts, I., and Edwards, A. D. 2001. Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet 358:1699–1700.PubMedGoogle Scholar
  22. 22.
    Chamnanvanakij, S., Margraf, L. R., Burns, D., and Perlman, J. M. 2002. Apoptosis and white matter injury in preterm infants. Pediatr. Dev. Pathol. 5:184–189.PubMedGoogle Scholar
  23. 23.
    Volpe, J. J. 2001. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50:553–562.PubMedGoogle Scholar
  24. 24.
    Rees, S., Stringer, M., Just, Y., Hooper, S. B., and Harding, R. 1997. The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Brain Res. Dev. Brain Res. 103:103–118.PubMedGoogle Scholar
  25. 25.
    Matsuda, T., Okuyama, K., Cho, K., Hoshi, N., Matsumoto, Y., Kobayashi, Y., and Fujimoto, S. 1999. Induction of antenatal periventricular leukomalacia by hemorrhagic hypotension in the chronically instrumented fetal sheep. Am. J. Obstet. Gynecol. 181:725–730.PubMedGoogle Scholar
  26. 26.
    Mallard, E. C., Waldvogel, H. J., Williams, C. E., Faull, R. L., and Gluckman, P. D. 1995. Repeated asphyxia causes loss of striatal projection neurons in the fetal sheep brain. Neuroscience 65:827–836.PubMedGoogle Scholar
  27. 27.
    De Haan, H. H., Gunn, A. J., Williams, C. E., and Gluckman, P. D. 1997. Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr. Res. 41:96–104.PubMedGoogle Scholar
  28. 28.
    Mayhan, W. G. 1998. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: Role of inducible nitric oxide synthase. Brain Res. 792:353–357.PubMedGoogle Scholar
  29. 29.
    Chao, C. C., Hu, S., and Peterson, P. K. 1995. Glia, cytokines, and neurotoxicity. Crit. Rev. Neurobiol. 9:189–205.PubMedGoogle Scholar
  30. 30.
    Hagberg, H., Gilland, E., Bona, E., Hanson, L. A., Hahin-Zoric, M., Blennow, M., Holst, M., McRae, A., and Soder, O. 1996. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr. Res. 40:603–609.PubMedGoogle Scholar
  31. 31.
    Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S. 2000. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. J. Neurosci. 20:6309–6316.PubMedGoogle Scholar
  32. 32.
    Anthony, D. C., Bolton, S. J., Feam, S., and Perry, V. H. 1997. Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats. Brain 120:435–444.PubMedGoogle Scholar
  33. 33.
    Inage, Y. W., Itoh, M., and Takashima, S. 2000. Correlation between cerebrovascular maturity and periventricular leukomalacia. Pediatr. Neurol. 22:204–208.PubMedGoogle Scholar
  34. 34.
    Hardy, R. J. and Friedrich, V. L., Jr. 1996. Progressive remodeling of the oligodendrocyte process arbor during myelinogenesis. Dev. Neurosci. 18:243–254.PubMedGoogle Scholar
  35. 35.
    Fern, R. and Moller, T. 2000. Rapid ischemic cell death in immature oligodendrocytes: A fatal glutamate release feedback loop. J. Neurosci. 20:34–42.PubMedGoogle Scholar
  36. 36.
    Selmaj, K. W. and Raine, C. S. 1988. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23:339–346.PubMedGoogle Scholar
  37. 37.
    Yonezawa, M., Back, S. A., Gan, X., Rosenberg, P. A., and Volpe, J. J. 1996. Cystine deprivation induces oligodendroglial death: Rescue by free radical scavengers and by a diffusible glial factor. J. Neurochem. 67:566–573.PubMedGoogle Scholar
  38. 38.
    Follett, P. L., Rosenberg, P. A., Volpe, J. J., and Jensen, F. E. 2000. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci. 20:9235–9241.PubMedGoogle Scholar
  39. 39.
    Bennet, L., Rossenrode, S., Gunning, M. I., Gluckman, P. D., and Gunn, A. J. 1999. The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J. Physiol. 517:247–257.PubMedGoogle Scholar
  40. 40.
    Young, R. S., Hernandez, M. J., and Yagel, S. K. 1982. Selective reduction of blood flow to white matter during hypotension in newborn dogs: A possible mechanism of periventricular leukomalacia. Ann. Neurol. 12:445–448.PubMedGoogle Scholar
  41. 41.
    Ando, M., Takashima, S., and Mito, T. 1988. Endotoxin, cerebral blood flow, amino acids and brain damage in young rabbits. Brain Dev. 10:365–370.PubMedGoogle Scholar
  42. 42.
    Quan, N., Whiteside, M., and Herkenham, M. 1998. Time course and localization patterns of interleukin-1 beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83:281–293.PubMedGoogle Scholar
  43. 43.
    van Dam, A. M., Poole, S., Schultzberg, M., Zavala, F., and Tilders, F. J. 1998. Effects of peripheral administration of LPS on the expression of immunoreactive interleukin-1 alpha, beta, and receptor antagonist in rat brain. Ann. N Y Acad. Sci. 840:128–138.PubMedGoogle Scholar
  44. 44.
    Lacroix, S., Feinstein, D., and Rivest, S. 1998. The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol. 8:625–640.PubMedGoogle Scholar
  45. 45.
    Nadeau, S. and Rivest, S. 2000. Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor kappa B activity in the brain during endotoxemia. J. Neurosci. 20:3456–3468.PubMedGoogle Scholar
  46. 46.
    Eklind, S., Mallard, C., Leverin, A. L., Gilland, E., Blomgren, K., Mattsby-Baltzer, I., and Hagberg, H. 2001. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur. J. Neurosci. 13:1101–1106.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Carina Mallard
    • 1
  • Anna-Karin Welin
    • 2
  • Donald Peebles
    • 3
  • Henrik Hagberg
    • 2
  • Ingemar Kjellmer
    • 4
  1. 1.Perinatal Center, Department of Physiology and PharmacologyGöteborg UniversityGothenburgSweden
  2. 2.Perinatal Center, Department of Obstetrics and Gynecology, Institute for the Health of Women and ChildrenSahlgrenska University Hospital/EastGothenburgSweden
  3. 3.Department of Obstetrics and GynecologyUniversity College of LondonLondonUnited Kingdom
  4. 4.Perinatal Center, Department of PediatricsThe Queen Silvia Children's HospitalGothenburgSweden

Personalised recommendations