Journal of Insect Behavior

, Volume 11, Issue 4, pp 507–538 | Cite as

Differential Postalightment Oviposition Behavior of Monarch Butterflies on Asclepias Species

  • Meena Haribal
  • J. A. A. Renwick


The monarch butterfly, Danaus plexippus L., oviposits mainly on plants in the Asclepiadaceae, particularly within the genus Asclepias. We studied postalightment oviposition behavior of monarch females on three host species—Asclepias curassavica, A. incarnata , and A. tuberosa. After landing on the host, they used their forelegs, midlegs, and antennae to assess plant suitability. When these appendages were examined by scanning electron microscopy, contact chemoreceptor sensilla were found. In choice tests, A. incarnata was most preferred, while A. tuberosa was least preferred. However, the use of appendages varied for the different host species. Antennae were most frequently used during post-alightment behavior on A. curassavica, whereas forelegs were used more often on A. incarnata, and all three appendages were used extensively on A. tuberosa. Use of the midlegs was generally followed by use of the antennae. Tasting with either forelegs or antennae apparently may lead to egg laying on some host species. Rupture of the plant surface by midleg spines was also observed. The behavior and host preference of individual females varied significantly and may reflect differences in receptor sensitivity.

monarch butterflies Danaus plexippus Danainae Lepidoptera Nymphalidae oviposition behavior Asclepias Asclepiadaceae chemoreceptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackery, P. R., and Vane-Wright, R. I. (1984). Milkweed Butterflies and Their Cladistics and Biology, British Museum, London, pp. 201-203.Google Scholar
  2. Allard, R. A., and Papaj, D. R. (1996). Learning of leaf shape by pipevine swallowtail butterflies: A test using artificial leaf models. J. Insect Behav. 9: 961-967.Google Scholar
  3. Anderson, P., and Halleberg, E. (1990). Structure and distribution of tactile and bimodal taste/tactile sensilla on the ovipositor, tarsi and antennae of the flour moth, Ephestia kuehneilla (Zeller) (Lepidoptera: Pyralidae). Int. J. Insect Morphol. Embryol. 19: 13-23.Google Scholar
  4. Bart, K. M., and Williams, E. H. (1993). Use of dental wax for the study of insect behavior by scanning electron microscopy. Microsc. Res. Techn. 26: 180-181.Google Scholar
  5. Baur, R., Feeny, P., and Städler, E. (1993). Oviposition stimulants for the black swallowtail butterfly: Identification of electrophysiologically active compounds in carrot volatiles. J. Chem. Ecol. 19: 919-938.Google Scholar
  6. Baur, R., Haribal, M., Renwick, J. A. A., and Städler, E. (1998). Contact chemoreception related to host and oviposition behavior in the monarch butterfly, Danaus plexippus. Physiol. Entomol. 23: 7-19.Google Scholar
  7. Boodley, J. W., and Sheldrake, R. (1977). Cornell peat-lite mixes for commercial plant growing. Cornell Inform. Bull. 42: 1-8.Google Scholar
  8. Boppré, M. (1983). Leaf scratching-a specialised behaviour of danainae butterflies (Lepidoptera) for gathering secondary plant substances. Oecologia (Berlin) 59: 414-416.Google Scholar
  9. Calvert, W. H. (1974). The external morphology of foretarsal receptors involved with host discrimination by the nymphalid butterfly Chlosyne lacinia. Ann. Entomol. Soc. Am. 67: 853-856.Google Scholar
  10. Calvert, W. H., and Hanson, F. E. (1983). The role of sensory structures and preoviposition behavior in oviposition by the Patch butterfly, Chlosyne lacinia. Entomol. Exp. Appl. 33: 179-187.Google Scholar
  11. Chadha, G. K., and Roome, R. E. (1980). Oviposition behavior and the sensilla of the ovipositor of Chilo partellus and Spodoptera littoralis (Lepidoptera: Noctuidae). J. Zool. (Lond.) 192: 169-178.Google Scholar
  12. Dixon, C. A., Erickson, J. M., Kellet, D. N., and Rothschild, M. (1978). Some adaptations between Danaus plexippus and its food plant with notes on Danaus chrysippus and Euploea core (Insecta: Lepidoptera). J. Zool. (Lond.) 185: 437-467.Google Scholar
  13. Du, Y. J., Van Loon, J. J. A., and Renwick, J. A. A. (1995). Contact chemoreception of oviposition-stimulating glucosinolates and an oviposition-deterrent cardenolide in two subspecies of Pieris napi. Physiol. Entomol. 20: 164-174.Google Scholar
  14. Feeny, P., Städler, E., Åhman, I., and Carter, M. (1989). Effects of plant odor on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J. Insect Behav. 2: 803-827.Google Scholar
  15. Fox, R. M. (1966). Forelegs of butterflies I. Introduction: Chemoreception. J. Res. Lepidop. 5: 1-12.Google Scholar
  16. Frazier, J. L. (1985). How animals perceive secondary plant compounds. In Blum, M. S. (ed.), Fundamentals of Insect Physiology, Wiley, New York, pp. 89-134.Google Scholar
  17. Frings, H., and Frings, M. (1959). Studies on antennal contact chemoreception by the wood nymph butterfly, Cercyonis pegala. J. N.Y. Entomol. Soc. 42: 97-106.Google Scholar
  18. Haribal, M., and Renwick, J. A. A. (1996). Oviposition stimulants for monarch butterfly: Flavonol glycosides from Asclepias curassavica. Phytochemistry 41: 139-144.Google Scholar
  19. Haribal, M., and Renwick, J. A. A. (1998). Identification and distribution of oviposition stimulants for monarch butterflies in hosts and non-hosts. J. Chem. Ecol. 26: 891-906.Google Scholar
  20. Huang, X. P., and Renwick, J. A. A. (1993). Differential selection of host plants by two Pieris species: The role of oviposition stimulants and deterrents. Entomol. Exp. Appl. 68: 59-69.Google Scholar
  21. Hughes, P. R., Radke, C. D., and Renwick, J. A. A. (1993). A simple low-input method for continuous laboratory rearing of the monarch butterfly (Lepidoptera: Danaidae) for research. Am. Entomol. 39: 109-111.Google Scholar
  22. Ichinose, T., and Honda, H. (1978). Ovipositional behavior of Papilio protenor demetrius Cramer and the factors involved in its host plants. Appl. Entomol. Zool. 13: 103-114.Google Scholar
  23. Kent, K. S., and Griffin, L. M. (1990). Sensory organs of the thoracic legs of the moth Maduca sexta. Cell Tissue Res. 259: 209-224.Google Scholar
  24. Klijnstra, J. W., and Roessingh, P. (1986). Perception of the oviposition deterring pheromone by tarsal and abdominal contact chemoreceptor in Pieris brassica. Entomol. Exp. Appl. 40: 71-80.Google Scholar
  25. Ma, W. C., and Schoonhoven, L. M. (1973). Tarsal contact chemosensory hairs of the large white butterfly, Pieris brassicae, and their possible role in oviposition behaviour. Entomol. Exp. Appl. 16: 343-357.Google Scholar
  26. Mackay, D. A., and Jones, R. E. (1989). Leaf shape and the host-finding behavior of two ovipositing monophagus butterfly species. Ecol. Entomol. 14: 423-432.Google Scholar
  27. Marion-Poll, F. C., Guillaumin, D., and Masson, C. (1992). Sexual dimorphism of tarsal receptors and sensory equipment of the ovipositor in the European corn borer, Ostrinia nubilalis. Cell Tissue Res. 267: 507-518.Google Scholar
  28. Myers, J. (1968). The structure of the antennae of the Florida queen butterfly, Danaus gilippus bernice (Cramer). J. Morphol. 25: 315-328.Google Scholar
  29. Myers, J. (1969). Distribution of foodplant chemoreceptors on the female Florida queen butterfly Danaus gilippus bernice (Nymphalidae). J. Lepidop. Soc. 23: 196-198.Google Scholar
  30. Ramaswamy, S. B. (1988). Host-finding by moths: Sensory modalities and behaviours. J. Insect Physiol. 34: 235-249.Google Scholar
  31. Ramaswamy, S. B., Ma, W. K., and Baker, G. T. (1987). Sensory cues and receptors for oviposition by Heliothis virescens. Entomol. Exp. Appl. 43: 159-168.Google Scholar
  32. Rausher, M. D. (1995). Behavioral ecology of oviposition in the pipevine swallowtail, Battus philenor. In Scriber, J. M., Tsubaki, Y., and Lederhouse, R. C. (eds.), Scientific, Gainesville, FL, pp. 53-62.Google Scholar
  33. Renwick, J. A. A., and Chew, F. S. (1994). Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 39: 377-400.Google Scholar
  34. Renwick, J. A. A., and Huang, X. (1994). Interacting chemical stimuli mediating oviposition by Lepidoptera. In Ananthakrishnan, T. N. (ed.), Functional Dynamics of Phytophagus Insects, Oxford and IBH, New Delhi, pp. 79-94.Google Scholar
  35. Roessingh, P., Städler, E., Schöni, R., and Feeny, P. (1991). Tarsal contact chemoreceptors of the black swallowtail butterfly Papilio polyxenes responses to phytochemicals from host and non-host plants. Physiol. Entomol. 16: 485-495.Google Scholar
  36. Siegel, S., and Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York.Google Scholar
  37. Singer, M. C. (1986). The definition and measurement of oviposition preferences in plant-feeding insects. In Miller, J. R., and Miller, T. A. (eds.), Insect-Plant Interactions, Springer-Verlag, New York, pp. 65-94.Google Scholar
  38. Singer, M. C., Vasco, D., Parmesan, C., Thomas, C. D., and Ng, D. (1992). Distinguishing between preference and motivation in food choice an example from insect oviposition. Anim. Behav. 44: 463-471.Google Scholar
  39. Snedecor, W. G., and Cochran, G. W. (1989). Statistical Methods, Iowa State University Press, Ames.Google Scholar
  40. Städler, E. (1974). Host plant stimuli affecting oviposition behavior of the eastern spruce budworm. Entomol. Exp. Appl. 17: 176-188.Google Scholar
  41. Städler, E., Renwick, J. A. A., Radke, C. D., and Sachdev-Gupta, K. (1995). Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol. Entomol. 20: 175-187.Google Scholar
  42. Stanton, M. L. (1984). Short-term learning and searching accuracy of egg-laying butterflies. Anim. Behav. 32: 33-40.Google Scholar
  43. Traynier, R. M. M., and Hines, E. R. (1987). Probes by aphids indicated by stain induced fluorescence in leaves. Ent. Exp. Appl. 5: 198-201.Google Scholar
  44. Urquhart, F. A. (1960). The Monarch Butterflies: International Traveller, Nelson-Hall, Chicago, pp. 81-84.Google Scholar
  45. Zalucki, M. P., Brower, L. P., and Malcolm, S. B. (1990). Oviposition by Danaus plexippus in relation to cardenolide content of three Asclepias species in southeastern U.S.A. Ecol. Entomol. 15: 231-240.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Meena Haribal
    • 1
  • J. A. A. Renwick
    • 1
  1. 1.Boyce Thompson InstituteIthaca

Personalised recommendations