Journal of Chemical Ecology

, Volume 24, Issue 3, pp 473–490 | Cite as

Solid-Phase Microextraction and Cuticular Hydrocarbon Differences Related to Reproductive Activity in Queenless Ant Dinoponera quadriceps

  • Thibaud Monnin
  • Christian Malosse
  • Christian Peeters
Article

Abstract

We extracted the cuticular hydrocarbons from live Dinoponera quadriceps ants (10 colonies collected from Brazil) with the solventless solid-phase microextraction (SPME) technique. Gas chromatography of the SPME samples (N = 233 measurements) compared with pentane extracts (N = 10) resulted in similar profiles. Eighty-one compounds belonging to the main long-chain hydrocarbon families were identified by GC-MS. There is no morphologically specialized queen in D. quadriceps and only one aggressively dominant worker (alpha) mates and reproduces in each colony. The alpha ant (N = 26 individuals) always yielded higher amounts and percentages of 9-hentriacontene (9-C31 : 1) than her sterile nestmates (N = 47). Since SPME is not destructive, it allowed for the repeated extraction of the same individuals, demonstrating that the alpha ant (virgin or mated) always had higher levels of 9-hentriacontene. This difference appears related to ovarian activity and may function as a signal of the alpha's dominance status.

Ant Ponerinae reproduction dominance cuticular hydrocarbons solid-phase microextraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arnold, G., Quenet, B., Cornuet, J.-M., Masson, C., De Schepper, B., Estoup, A., and Gasqui, P. 1996. Kin recognition in honeybees. Nature 379:498.Google Scholar
  2. Arthur, C. L., and Pawliszyn, J. 1990. Solid phase microextraction with thermal desorption using fused silica optic fibers. Anal. Chem. 62:656.Google Scholar
  3. Arthur, C. L., Potter, D. W., Buchholz, K. D., Motlagh, F., and Pawliszyn, J. 1992. Solid phase microextraction for the direct analysis of water: theory and practice. LC-GC 10:2145.Google Scholar
  4. Ayasse, M., Maelovits, T., TengÖ, J., Taghizadeh, T., and Francke, W. 1995. Are there pheromonal dominance signals in the bumblebee Bombus hypnorum L. (Hymenoptera, Apidae)? Apidologie 26:163–180.Google Scholar
  5. BagnÈres, A.-G., Lorenzi, M. C., Dusticier, G., Turillazi, S., and ClÉment, J.-L. 1996. Chemical usurpation of a nest by paper wasp parasites. Science 272:889–892.Google Scholar
  6. Berlardi, R., and Pawliszyn, J. 1989. The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Pollut. Res. J. Can. 24:179.Google Scholar
  7. Billen, J., BrandÀo, C. R. F., and Paiva, R. V. S. 1995. Morphology and ultrastructure of the pygidial gland of the ant Dinoponera australis (Hymenoptera, Formicidae). Pap. Avulsos Zool. 39:209–216.Google Scholar
  8. Bonavita-Cougourdan, A., ClÉment, J.-L., and Lange, C. 1987. Nestmate recognition: The role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J. Entomol. Sci. 22:1–10.Google Scholar
  9. Bonavita-Cougourdan, A., ThÉraulaz, G., BagnÈres, A.-G., Roux, M., Pratte, M., Provost, E., and ClÉment, J.-L. 1991. Cuticular hydrocarbons, social organization and ovarian development in a polistine wasp: Polistes dominulus Christ. Comp. Biochem. Physiol. 100B:667–680.Google Scholar
  10. Diehl, P. A. 1975. Synthesis and release of hydrocarbons by the oenocytes of the desert locust, Schistocerca gregaria. J. Insect Physiol. 21:1237–1246.Google Scholar
  11. Downing, H. A., and Jeanne, R. L. 1985. Communication of status in the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Z. Tierpsychol. 67:78–96.Google Scholar
  12. Espelie, K. E., Gamboa, G. J., Grudzien, T. A., and Bura, E. A. 1994. Cuticular hydrocarbons of the paper wasp, Polistes fuscatus: A search for recognition pheromones. J. Chem. Ecol. 20:1677–1687.Google Scholar
  13. Ferrer-Correira, A. J., Jennings, K. R., and Sen Sharma, D. K. 1976. The use of ion-molecule reactions in the mass spectrometric location of double bonds. Org. Mass Spectrom. 11:867.Google Scholar
  14. Fletcher, D. J. C., and Ross, K. G. 1985. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30:319–343.Google Scholar
  15. FrÉrot, B., Malosse, C., and Cain, A. H. 1997. Solid-phase microextraction (SPME) a new tool in pheromone identification of Lepidoptera. J. High Resolut. Chromatogr. 20:340–342.Google Scholar
  16. Heinze, J., HÖlldobler, B., and Peeters, C. 1994. Conflict and cooperation in ant societies. Naturwissenschaften 81:489–497.Google Scholar
  17. Hepburn, H. R. 1986. Honeybees and Wax—An Experimental Natural History. Springer-Verlag, Berlin.Google Scholar
  18. Ismail, M. T., and Zachary, D. 1984. Sex pheromones in Culicoides nubeculosus (Diptera, Ceratopogonidae): Possible sites of production and emission. J. Chem. Ecol. 10:1385–1398.Google Scholar
  19. Lenoir, A., Malosse, C., and Yamaoka, R. 1997. Chemical mimicry between parasitic ants Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochem. Syst. Ecol. 25:379–389.Google Scholar
  20. Malosse, C., Einhorn, J., and Lenoir, A. 1994. An application of ion-molecule reaction with vinyl methyl ether: direct location of double bond in C25 to C33 monoolefins of ants cuticular extracts. 13th IMSC, Budapest, Hungary, August 29–September 2.Google Scholar
  21. Malosse, C., Ramirez-Lucas, P., Rochat, D., and Morin, J.-P. 1995. Solid-phase microextraction, an alternative method for the study of airborne insect pheromones (Metamasius hemipterus, Coleoptera, Curculionidae). J. High Resolut. Chromatogr. 18:669–670.Google Scholar
  22. Monnin, T., and Peeters, C. 1997. Cannibalism of subordinates' eggs in the monogynous queenless ant Dinoponera quadriceps. Naturwissenschaften 84:499–502.Google Scholar
  23. Monnin, T., and Peeters, C. 1998. Monogyny and regulation of worker mating in the queenless and Dinoponera quadriceps. Anim. Behav. In press.Google Scholar
  24. Mozuraitis, R., Borg-Karlson, A. K., Eiras, A., Witzgall, P., Kovaleski, A., Vilela, E. F., and Unelius, C. R. 1996. Solid Phase Microextraction technique used for collecting volatiles released by individual signalling Bonagota cranaodes moths. 13th ISCE, Prague, Czech Republic, August 18–22.Google Scholar
  25. Noirot, C., and Quennedey, A. 1991. Glands, gland cells, glandular units: Some comments on terminology and classification. Ann. Soc. Entomol. Fr. 27:123–128.Google Scholar
  26. Oldham, N. J., Keegans, S. J., Morgan, E. D., Paiva, R. V. S., BrandÃo, C. R. F., Schoeters, E., and Billen, J. P. J. 1994. Mandibular gland contents of a colony of the queenless ponerine ant Dinoponera australis. Naturwissenschaften 81:313–316.Google Scholar
  27. Paiva, R. V. S., and BrandÃo, C. R. F. 1995. Nests, worker population, and reproductive status of workers, in the true giant queenless ponerine ant Dinoponera Roger (Hymenoptera: Formicidae). Ethol. Ecol. Evol. 7:297–312.Google Scholar
  28. Peeters, C. 1993. Monogyny and polygyny in ponerine ants with or without queens, pp. 235–261, in L. Keller (ed.). Queen Number and Sociality in Insects. Oxford University Press, New York.Google Scholar
  29. Plettner, E., Slessor, K. N., Winston, M. L., and Oliver, J. E. 1996. Caste-selective pheromone biosynthesis in honeybees. Science 271:1851–1853.Google Scholar
  30. Reeve, H. K. 1991. Polistes, pp. 99–148, in K. G. Ross and R. W. Matthews (eds.). The Social Biology of Wasps. Cornell University Press, Ithaca.Google Scholar
  31. Reyment, R. A. 1989. Compositional data analysis. Terra Rev. 1:29–34.Google Scholar
  32. RÖseler, P.-F. 1991a. Reproductive competition during colony establishment, pp. 309–335, in K. G. Ross and R. W. Matthews, (eds.). The Social Biology of Wasps. Cornell University Press, Ithaca.Google Scholar
  33. RÖseler, P.-F. 1991b. Roles of morphogenetic hormones in caste polymorphism in bumble bees. pp. 384–399, in A. P. Gupta (ed.). Morphogenetic Hormones of Arthropods: Roles in Histogenesis, Organogenesis, and Morphogenesis. Rutgers University Press, New Brunswick, New Jersey.Google Scholar
  34. Trabalon, M., Campan, M., Porcheron, P., ClÉment, J.-L., Baehr, J.-C., MoriniÈre, M., and Joulie, C. 1990. Relationships among hormonal changes, cuticular hydrocarbons, and attractiveness during the first gonadotropic cycle of the female Calliphora vomitoria (Diptera). Gen. Comp. Endocrinol. 80:216–222.Google Scholar
  35. Visscher, P. K., and Dukas, R. 1995. Honeybees recognize development of nestmates' ovaries. Anim. Behav. 49:542–544.Google Scholar
  36. West-Eberhard, M. J. 1977. The establishment of reproductive dominance in social wasp colonies, pp. 223–227, in Proceedings, 8th International Congress, IUSSI, Wageningen.Google Scholar
  37. Winston, M. L. 1987. The Biology of the Honey Bee. Harvard University Press, London, 281 pp.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Thibaud Monnin
    • 1
  • Christian Malosse
    • 2
  • Christian Peeters
    • 1
  1. 1.CNRS URA 667Laboratoire d'Ethologie Expérimentale et Comparée, UniversitéVilletaneuseFrance
  2. 2.INRAUnité de Phytopharmacie et Médiateurs ChimiquesVersailles cedexFrance

Personalised recommendations