Advertisement

Plant Molecular Biology

, Volume 51, Issue 4, pp 577–587 | Cite as

Identification of a copper transporter family in Arabidopsis thaliana

  • Vicente Sancenón
  • Sergi Puig
  • Helena Mira
  • Dennis J. Thiele
  • Lola Peñarrubia
Article

Abstract

Despite copper ions being crucial in proteins participating in plant processes such as electron transport, free-radical elimination and hormone perception and signaling, very little is known about copper inward transport across plant membranes. In this work, a five-member family (COPT1–5) of putative Arabidopsis copper transporters is described. We ascertain the ability of these proteins to functionally complement and transport copper in the corresponding Saccharomyces cerevisiae high-affinity copper transport mutant. The specific expression pattern of the Arabidopsis COPT1–5 mRNA in different tissues was analyzed by RT-PCR. Although all members are ubiquitously expressed, differences in their relative abundance in roots, leaves, stem and flowers have been observed. Moreover, steady-state COPT1 and COPT2 mRNA levels, the members that are most efficacious in complementing the S. cerevisiae high-affinity copper transport mutant, are down-regulated under copper excess, consistent with a role for these proteins in copper transport in Arabidopsis cells.

Arabidopsis copper transport heterologous complementation RT-PCR 64Cu uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, J.M., Hirayama, T., Roamn, G., Nourizadeh, S. and Ecker, J.R. 1999. EIN2, a bifunctional transducer of ethylene and stress response in Arabidopsis. Science 284: 2148–2152.Google Scholar
  2. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  3. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. 1995. Current Protocols in Molecular Biology. John Wiley, New York.Google Scholar
  4. Dancis, A., Haile, D., Yuan, D.S. and Klausner, R.D. 1994a. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiological role in copper uptake. J. Biol. Chem. 269: 25660–25667.Google Scholar
  5. Dancis, A., Yuan, D.S., Haile, D., Askwith, C., Eide, D. Moehle, C., Kaplan, J. and Klausner, R.D. 1994b. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76: 393–402.Google Scholar
  6. Dower, W.T., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucl. Acids Res. 16: 6127–6145.Google Scholar
  7. Elledge, S.J., Mulligan, J.T., Ramer, S.W., Spottswood, M. and Davis, R.W. 1991. ?-YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. Natl. Acad. Sci. USA 88: 1731–1735.Google Scholar
  8. Feng, D.F. and Doolittle, R.F. 1987. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25: 351–360.Google Scholar
  9. Fox, T.C. and Guerinot, M.L. 1998. Molecular biology of cation transport in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 669–696.Google Scholar
  10. Gietz, R.D., Schiestl, R.H. and Willems, A.R., Woods, R.A. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355–360.Google Scholar
  11. Halliwell, B. and Gutteridge J.M. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Meth. Enzymol. 186: 1–85.Google Scholar
  12. Harris, E.D. 2000. Cellular copper transport and metabolism. Annu. Rev. Nutr. 20: 291–310.Google Scholar
  13. Himelblau, E. and Amasino, R.M. 2000. Delivering copper within plant cells. Curr. Opin. Plant Biol. 3: 205–210.Google Scholar
  14. Himelblau, E., Mira, H., Lin, S.-J., Culotta, V.C., Peñarrubia, L. and Amasino, R.M. 1998. Identification of a functional homolog of the yeast copper-binding gene ATX from Arabidopsis thaliana. Plant Physiol. 117: 1227–1234.Google Scholar
  15. Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey, W.P., Dancis, A. and Ecker, J.R. 1999. RESPONSIVE-TO-ANTAGO-NIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383–393.Google Scholar
  16. Huffman D.L., O'Halloran, T.V. 2001. Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem. 70: 677–701.Google Scholar
  17. Kampfenkel, K., Kushinr, S., Babychuk, E., Inzé, D. and Van Montagu, M. 1995. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J. Biol. Chem. 270: 28479–28486.Google Scholar
  18. Knight, S.A.B., Labbé, S., Kwon, L., Kosman, D.J. and Thiele, D.J. 1996. A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev. 10: 1917–1929.Google Scholar
  19. Koch, K.A., Peña, M.M.O. and Thiele, D.J. 1997. Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem. Biol. 4: 549–560.Google Scholar
  20. Labbé, S. and Thiele, D.J. 1999. Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol. 7: 500–505.Google Scholar
  21. Labbé, S., Zhu, Z. and Thiele, D.J. 1997. Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J. Biol. Chem. 272: 15951–15958.Google Scholar
  22. Labbé, S., Peña, M.M.O., Fernandes, A.R. and Thiele, D.J. 1999. A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe. J. Biol. Chem. 274: 36252–36260.Google Scholar
  23. Lee, J., Prohaska, J.R., Dagenais, S.L., Glover, T.W. and Thiele, D.J. 2000. Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene 254: 87–96.Google Scholar
  24. Lee, J., Pena, M.M.O., Nose, Y. and Thiele, D.J. 2002. Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 272: 4380–4387.Google Scholar
  25. Miller, J.D., Arteca, R.N. and Pell, E.J. 1999. Senescenceassociated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol. 120: 1015–1024.Google Scholar
  26. Mira, H., Martínez-García, F. and Peñarrubia, L. 2001a. Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J. 25: 521–528.Google Scholar
  27. Mira, H., Vilar, M., Perez-Paya, E., Penarrubia, L. 2001b. Functional and conformational properties of the exclusive C-domain from the Arabidopsis copper chaperone (CCH). Biochem. J. 15: 545–549.Google Scholar
  28. Mumberg, D., Müller, R. and Funk, M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119–122.Google Scholar
  29. Peña, M.M., Lee, J. and Thiele, D.J. 1999. A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129: 1251–1260.Google Scholar
  30. Peña, M.M., Puig, S. and Thiele, D.J. 2000. Characterization of the Saccharomyces cerevisiae high-affinity copper transporter Ctr3. J. Biol. Chem. 275: 33244–33251.Google Scholar
  31. Portnoy, M.E., Schmidt, P.J., Rogers, R.S. and Cullotta, V.C. 2001. Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol. Genet. Genomics 265: 873–882.Google Scholar
  32. Prescott, A. and Martin, C. 1987. A rapid method for the quantitative assessment of levels of specific mRNAs in plants. Plant Mol. Biol. Rep. 4: 219–224.Google Scholar
  33. Puig, S. and Thiele D.J. 2002. Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 6: 171–180.Google Scholar
  34. Puig, S., Lee, J., Lau, M. and Thiele D.J. 2002. Biochemical and genetic analyses of yeast and human high-affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277: 26021–26030.Google Scholar
  35. Rauser, W.E. 1995. Phytochelatins and related peptides. Plant Physiol. 109: 1141–1149.Google Scholar
  36. Rodriguez, F.I., Esch, J.J., Hall, A.E., Binder, B.M., Schaller, G.E. and Bleecker, A.B. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283: 996–998.Google Scholar
  37. Rothnie, H.M. 1996. Plant mRNA 3′-end formation. Plant Mol. Biol. 32: 43–61.Google Scholar
  38. Salt, D.E., Smith, R.D. and Raskin, I. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643–668.Google Scholar
  39. Thompson, J. D., Higgins, D. J. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.Google Scholar
  40. Woeste, K.E. and Kieber, J.J. 2000. A strong loss-of function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12: 443–455.Google Scholar
  41. Wu, L, Ueda, T. and Messing, J. 1995. The formation of mRNA 3′-ends in plants. Plant J. 8: 323–329.Google Scholar
  42. Yamaguchi-Iwai, Y., Serpe, M., Haile, D., Yang, W., Kosman, D.J., Klausner, R.D., Dancis, A. 1997. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J. Biol. Chem. 272: 17711–17718.Google Scholar
  43. Zhou, J. and Goldsbrough, P.B. 1995. Structure, organization and expresión of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet. 248: 318–328.Google Scholar
  44. Zhou, B. and Gitschier, J. 1997. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94: 7481–7486.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Vicente Sancenón
    • 1
  • Sergi Puig
    • 2
  • Helena Mira
    • 1
  • Dennis J. Thiele
    • 2
  • Lola Peñarrubia
    • 1
  1. 1.Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaValènciaSpain
  2. 2.Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations