BIT Numerical Mathematics

, Volume 39, Issue 4, pp 620–645 | Cite as

Exponential Integrators for Quantum-Classical Molecular Dynamics

  • Marlis Hochbruck
  • Christian Lubich
Article

Abstract

We study time integration methods for equations of mixed quantum-classical molecular dynamics in which Newtonian equations of motion and Schrödinger equations are nonlinearly coupled. Such systems exhibit different time scales in the classical and the quantum evolution, and the solutions are typically highly oscillatory. The numerical methods use the exponential of the quantum Hamiltonian whose product with a state vector is approximated using Lanczos' method. This allows time steps that are much larger than the inverse of the highest frequencies.

We describe various integration schemes and analyze their error behaviour, without assuming smoothness of the solution. As preparation and as a problem of independent interest, we study also integration methods for Schrödinger equations with time-dependent Hamiltonian.

Numerical integrator oscillatory solutions Schrödinger equation quantum-classical coupling error bounds stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms, J. Statist. Phys., 74 (1994), pp. 1117–1143.Google Scholar
  2. 2.
    S. R. Billeter and W. F. van Gunsteren, A modular molecular dynamics/quantum dynamics program for non-adiabatic proton transfers in solution, Comp. Phys. Comm., 107 (1997), pp. 61–91.Google Scholar
  3. 3.
    F. A. Bornemann, P. Nettesheim, and Ch. Schütte, Quantum-classical molecular dynamics as an approximation to full quantum dynamics, J. Chem. Phys., 105 (1996), pp. 1074–1083.Google Scholar
  4. 4.
    P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin, 1999.Google Scholar
  5. 5.
    V. L. Druskin and L. A. Knizhnerman, Krylov subspace approximations of eigenpairs and matrix functions in exact and computer arithmetic, Numer. Lin. Alg. Appl., 2 (1995), pp. 205–217.Google Scholar
  6. 6.
    B. García-Archilla, J. M. Sanz-Serna, and R. Skeel, Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput., 20 (1999), pp. 930–963.Google Scholar
  7. 7.
    E. Hairer and Ch. Lubich, The life-span of backward error analysis for numerical integrators, Numer. Math., 76 (1997), pp. 441–462.Google Scholar
  8. 8.
    M. Hochbruck and Ch. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.Google Scholar
  9. 9.
    M. Hochbruck and Ch. Lubich, A bunch of time integrators for quantum/classical molecular dynamics, in J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin [4], 1999, pp. 421–432.Google Scholar
  10. 10.
    M. Hochbruck and Ch. Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math., 83 (1999), pp. 403–426.Google Scholar
  11. 11.
    M. Hochbruck, Ch. Lubich, and H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552–1574.Google Scholar
  12. 12.
    A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups, Phil. Trans. Royal Soc. A, 357 (1999), pp. 983–1020.Google Scholar
  13. 13.
    T. Jahnke, Splittingverfahren für Schrödingergleichungen, Diploma Thesis, Univ. Tübingen, 1999.Google Scholar
  14. 14.
    R. Kosloff, Propagation methods for quantum molecular dynamics, Annu. Rev. Phys. Chem., 45 (1994), pp. 145–178.Google Scholar
  15. 15.
    C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau Standards, 45 (1950), pp. 255–281.Google Scholar
  16. 16.
    W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), pp. 649–673.Google Scholar
  17. 17.
    P. Nettesheim, F. A. Bornemann, B. Schmidt, and Ch. Schütte, An explicit and symplectic integrator for quantum-classical molecular dynamics, Chem. Phys. Lett., 256 (1996), pp. 581–588.Google Scholar
  18. 18.
    P. Nettesheim and S. Reich, Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics, in J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin [4], 1999, pp. 412–420.Google Scholar
  19. 19.
    P. Nettesheim and Ch. Schütte, Numerical integrators for quantum-classical molecular dynamics, in J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin [4], 1999, pp. 396–411.Google Scholar
  20. 20.
    T. J. Park and J. C. Light, Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys., 85 (1986), pp. 5870–5876.Google Scholar
  21. 21.
    B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.Google Scholar
  22. 22.
    M. Paule, Integratoren für das QCMD Modell, Diploma Thesis, Univ. Tübingen, 1998.Google Scholar
  23. 23.
    U. Peskin, R. Kosloff, and N. Moiseyev, The solution of the time dependent Schrödinger equation by the (t, t′) method: The use of global polynomial propagators for time dependent Hamiltonians, J. Chem. Phys., 100 (1994), pp. 8849–8855.Google Scholar
  24. 24.
    S. Reich, Dynamical systems, numerical integration, and exponentially small estimates, Habilitation Thesis, FU Berlin, 1998.Google Scholar
  25. 25.
    S. Reich, Multiple time-scales in classical and quantum-classical molecular dynamics, J. Comp. Phys., 151 (1999), pp. 49–73.Google Scholar
  26. 26.
    H. Tal-Ezer and R. Kosloff, An accurate and efficient scheme for propagating the time-dependent Schrödinger equation, J. Chem. Phys., 81 (1984), pp. 3967–3971.Google Scholar
  27. 27.
    H. Tal-Ezer, R. Kosloff, and C. Cerjan, Low-order polynomial approximation of propagators for the time-dependent Schrödinger equation, J. Comp. Phys., 100 (1992), pp. 179–187.Google Scholar
  28. 28.
    Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 19 (1992), pp. 209–228.Google Scholar

Copyright information

© Swets & Zeitlinger 1999

Authors and Affiliations

  • Marlis Hochbruck
    • 1
  • Christian Lubich
    • 2
  1. 1.Mathematisches InstitutUniversität DüsseldorfDüsseldorfGermany
  2. 2.Mathematisches InstitutUniversität TübingenTübingenGermany, email: lubich@na.uni-tuebingen.de

Personalised recommendations