Journal of Fluorescence

, Volume 13, Issue 1, pp 105–108

Polystyrene Microspheres in Tissue-Simulating Phantoms Can Collisionally Quench Fluorescence

Article

Abstract

Tissue-simulating phantoms that replicate intrinsic optical properties in a controlled manner are useful for quantitative studies of photon transport in turbid biological media. In such phantoms, polystyrene microspheres are often used to simulate tissue optical scattering. Here, we report that using polystyrene microspheres in fluorescent tissue-simulating phantoms can reduce fluorophore quantum yield via collisional quenching. Fluorescence lifetime spectroscopy was employed to characterize quenching in phantoms consisting of a fluorescein dye and polystyrene microspheres (scattering coefficients μs ∼100-600cm−1). For this range of tissue-simulating phantoms, analysis using the Stern-Volmer equation revealed that collisional quenching by polystyrene microspheres accounted for a decrease in fluorescence intensity of 6-17% relative to the intrinsic intensity value when no microspheres (quenchers) were present. The intensity decrease from quenching is independent of additional, anticipated losses arising from optical scattering associated with the microspheres. These results suggest that quantitative fluorescence measurements in studies employing such phantoms may be influenced by collisional quenching.

Collisional quenching tissue phantoms time-resolved fluorescence lifetime spectroscopy polystyrene microspheres fluorescein dye 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Richards-Kortum and E. Sevick-Muraca (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47, 555-606.Google Scholar
  2. 2.
    G. Wagnieres, W. Star, and B. Wilson (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 68, 603-632.Google Scholar
  3. 3.
    B. B. Das, L. Feng, and R. R. Alfano (1997) Time-resolved fluorescence and photon migration studies in biomedical and model random media. Rep. Progr. Phys. 60, 227-292.Google Scholar
  4. 4.
    S. Chandrasekhar (1960) Radiative Transfer. Dover, NYGoogle Scholar
  5. 5.
    A. J. Welch and M. J. C. van-Gemert (1995) Optical-Thermal Response of Laser-Irradiated Tissue. Plenum Press, New York.Google Scholar
  6. 6.
    A. J. Durkin, S. Jaikumar, and R. Richards-Kortum (1993) Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples. Appl. Spectrosc. 47, 2114-2121.Google Scholar
  7. 7.
    J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy (1995) Time-resolved optical imaging of a solid tissue-equivalent phantom. Appl. Optics 34, 8038-8047.Google Scholar
  8. 8.
    K. Rinzema, L. H. P. Murrer, and W. M. Star (1998) Direct experimental verification of light transport theory in an optical phantom. J. Optical Soc. Am. 15, 2078-2088.Google Scholar
  9. 9.
    A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, and E. Gratton (1997) Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues. Appl. Optics 36, 116-124.Google Scholar
  10. 10.
    J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio (1997) Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Optics 36, 949-957.Google Scholar
  11. 11.
    A. Sefkow, M. Bree, and M.-A. Mycek (2001) A method for measuring cellular optical absorption and scattering evaluated using dilute cell suspension phantoms. Appl. Spectrosc. 55, 1495-1501.Google Scholar
  12. 12.
    M. Patterson, B. Chance, and B. Wilson (1989) Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Optics 28, 2331-2336.Google Scholar
  13. 13.
    E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar (1998) Adv. Optical Biopsy Optical Mammogr. 838, 46-57.Google Scholar
  14. 14.
    K. Vishwanath, B. W. Pogue, and M.-A. Mycek (2002) Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods. Phys. Med. Biol. 47.Google Scholar
  15. 15.
    S. A. Ramakrishna and K. D. Rao (2000) Estimation of light transport parameters in biological media using coherent backscattering. Pramana J. Phys. 54, 255-267.Google Scholar
  16. 16.
    S. J. Madsen, M. S. Patterson, and B. C. Wilson (1992) The use of India ink as an optical absorber in tissue-stimulating phantoms. Phys. Med. Biol. 37, 985-993.Google Scholar
  17. 17.
    C. L. Hutchinson, T. L. Troy, and E. M. Sevick Muraca (1996) Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics. Appl. Optics 35, 2325-2332.Google Scholar
  18. 18.
    L. Wang, D. Liu, N. He, S. L. Jacques, and S. L. Thomsen (1996) Biological laser action. Appl. Optics 35, 1775-1779.Google Scholar
  19. 19.
    J. R. Lakowicz (1999) Principles of Fluorescence Spectroscopy. 2nd ed. Kluwer Academic/Plenum, New York.Google Scholar
  20. 20.
    J. D. Pitts and M.-A. Mycek (2001) Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution. Rev. Sci. Instrum. 72, 3061-3072.Google Scholar
  21. 21.
    W.-F. Cheong, S. Prahl, and S. Welch. (1990) A review of the optical properties of biological tissues. IEEE J. Quantum Electr. 26, 2166-2185.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Physics and AstronomyDartmouth CollegeHanover, New Hampshire

Personalised recommendations