BIT Numerical Mathematics

, Volume 40, Issue 3, pp 471–496 | Cite as

Error Analysis of the Symplectic Lanczos Method for the Symplectic Eigenvalue Problem

  • Heike Fassbender
Article

Abstract

A rounding error analysis of the symplectic Lanczos algorithm for the symplectic eigenvalue problem is given. It is applicable when no break down occurs and shows that the restriction of preserving the symplectic structure does not destroy the characteristic feature of nonsymmetric Lanczos processes. An analog of Paige's theory on the relationship between the loss of orthogonality among the Lanczos vectors and the convergence of Ritz values in the symmetric Lanczos algorithm is discussed. As to be expected, it follows that (under certain assumptions) the computed J-orthogonal Lanczos vectors loose J-orthogonality when some Ritz values begin to converge.

Symplectic Lanczos method symplectic matrix eigenvalues error analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Z. Bai, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem, Math. Comp., 62(1994), pp. 209–226.Google Scholar
  2. 2.
    G. Banse, Symplektische Eigenwertverfahren zur L¨osung zeitdiskreter optimaler Steuerungs Probleme, Ph.D Thesis, Fachbereich 3—Mathematik und Informatik, Universit¨at Bremen, Bremen, Germany, 1995.Google Scholar
  3. 3.
    P. Benner and H. Faßbender, An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue problem, Berichte aus der Technomathematik, Report 98-01, Fachbereich 3—Mathematik und Informatik, Universit¨at Bremen, Bremen, Germany, 1998; to appear in SIAM. J. Matrix Anal. Appl.Google Scholar
  4. 4.
    P. Benner and H. Faßbender, The symplectic eigenvalue problem, the butterfly form, the SR algorithm, and the Lanczos method, Linear Algebra Appl., 275–276 (1998), pp. 19–47.Google Scholar
  5. 5.
    H. Faßbender, Symplectic Methods for Symplectic Eigenproblems, Habilitationsschrift, Fachbereich 3—Mathematik und Informatik, Universit¨at Bremen, Bremen, Germany, 1998.Google Scholar
  6. 6.
    R. Freund, Transpose-free quasi-minimal residual methods for non-Hermitian linear systems, in Recent Advances in Iterative Methods, IMA Workshop on Iterative Methods for Sparse and Structured Problems, Minneapolis, MN, February 24– March 1, 1992., G. Golub et al., eds., Vol. 60 of IMA Vol. Math. Appl., Springer– Verlag, New York, NY, 1994, pp. 69–94.Google Scholar
  7. 7.
    G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.Google Scholar
  8. 8.
    N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM Publications, Philadelphia, PA, 1996.Google Scholar
  9. 9.
    W. Kahan, B. Parlett, and E. Jiang, Residual bounds on approximate eigensystems of nonnormal matrices, SIAM J. Numer. Anal., 19(1982), pp. 470–484.Google Scholar
  10. 10.
    P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press, Oxford, 1995.Google Scholar
  11. 11.
    C. Lanczos,An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards, 45(1950), pp. 255–282.Google Scholar
  12. 12.
    V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, no. 163 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Heidelberg, July 1991.Google Scholar
  13. 13.
    C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, J. Inst. Math. Appl., 18(1976), pp. 341–349.Google Scholar
  14. 14.
    B. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear equations, Linear Algebra Appl., 29(1980), pp. 323–346.Google Scholar
  15. 15.
    B. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.Google Scholar
  16. 16.
    H. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods, Linear Algebra Appl., 61(1984), pp. 101–132.Google Scholar
  17. 17.
    K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, 1996.Google Scholar

Copyright information

© Swets & Zeitlinger 2000

Authors and Affiliations

  • Heike Fassbender
    • 1
  1. 1.Zentrum MathematikTechnische Universität MünchenMünchenGermany

Personalised recommendations