BIT Numerical Mathematics

, Volume 39, Issue 1, pp 25–33 | Cite as

Asymptotic Error Analysis of the Adaptive Verlet Method

  • Stéphane Cirilli
  • Ernst Hairer
  • Benedict Leimkuhler
Article

Abstract

The Adaptive Verlet method and variants are time-reversible schemes for treating Hamiltonian systems subject to a Sundman time transformation. These methods have been observed in computer experiments to exhibit superior numerical stability when implemented in a counterintuitive “reciprocal” formulation. Here we give a theoretical explanation of this behavior by examining the leading terms of the modified equation (backward error analysis) and those of the asymptotic error expansion. With this insight we are able to improve the algorithm by simply correcting the starting stepsize.

Adaptive Verlet method time-reversible variable stepsizes Hamiltonian systems Sundman time-transformations backward error analysis asymptotic expansions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. P. Calvo, M. A. López-Marcos, and J. M. Sanz-Serna, Variable step implementation of geometric integrators, Appl. Numer. Math., to appear.Google Scholar
  2. 2.
    G. F. Corliss and A. Griewank, eds., Automatic Differentiation of Algorithms. Theory, Implementation, and Application, SIAM, Philadelphia, PA, 1991.Google Scholar
  3. 3.
    E. Hairer, Variable timestep integration with symplectic methods, Appl. Numer. Math. 25 (1997), pp. 219-227.Google Scholar
  4. 4.
    E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Comput. Math., vol. 8, 2nd ed., Springer-Verlag, Berlin, 1993.Google Scholar
  5. 5.
    E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Comput. Math., vol. 14, 2nd ed., Springer-Verlag, Berlin, 1996.Google Scholar
  6. 6.
    Th. Holder, B. Leimkuhler, and S. Reich, Explicit, variable stepsize, and time-reversible integration, preprint, submitted, 1998.Google Scholar
  7. 7.
    W. Huang and B. Leimkuhler, The adaptive Verlet method, SIAM J. Sci. Comput. 18 (1997), pp. 239-256.Google Scholar
  8. 8.
    B. Leimkuhler, Reversible adaptive regularization I: Perturbed Kepler motion and classical atomic trajectories, Report 1997/NA-08, DAMTP, University of Cambridge, UK, 1997.Google Scholar
  9. 9.
    S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal., to appear.Google Scholar
  10. 10.
    D. Stoffer, Variable steps for reversible integration methods, Computing 55 (1995), pp. 1-22.Google Scholar

Copyright information

© Swets & Zeitlinger 1999

Authors and Affiliations

  • Stéphane Cirilli
    • 1
  • Ernst Hairer
    • 1
  • Benedict Leimkuhler
    • 2
  1. 1.Section de mathématiquesUniversité de GenèveGenève 24Switzerland, email
  2. 2.Department of Mathematics, 405 Snow HallUniversity of KansasLawrenceUSA

Personalised recommendations