Journal of Chemical Ecology

, Volume 24, Issue 11, pp 1845–1865

Elution Patterns from Capillary GC for Methyl-Branched Alkanes

  • David A. Carlson
  • Ulrich R. Bernier
  • Bruce D. Sutton


A common and confusing problem in analyses of insect hydrocarbons is in making sense of complicated gas chromatograms and interpreting mass spectra since branched chain compounds differing by one or two carbons in backbone or chain length may elute from the column at nearly the same time. To address this confusing situation, relative gas chromatography (GC) retention times are presented for typical mono-, di-, tri-, and tetramethylalkanes comprising most of the commonly appearing series of homologous methyl-branched alkanes up to 53 carbons that are found in insect cuticular hydrocarbons. Typical insect-derived methylalkanes with backbones of 33 carbons were characterized by Kovats indices (KI); monomethyl alkanes elute between KI 3328 and 3374, dimethylalkanes elute between KI 3340 and 3410, trimethylalkanes elute between KI 3378 and 3437, and tetramethylalkanes elute between KI 3409 and 3459, depending upon the positions of substituents. A protocol is described for identification of methyl-branched hydrocarbons eluted from nonpolar polysiloxane DB-1 capillary GC columns. In this protocol, retention indices (KI values) are assigned to peaks, then the patterns in GC peaks that probably contain homologs are marked to assist subsequent GC-mass spectrometric (GC-MS) interpretation. Use of the KI allows assignment of likely structures and the elimination of others, with demonstrative consistency, as there are no known exceptions. Interpretation of electron ionization mass spectra can then proceed within narrowed structural possibilities without the necessity of chemical ionization GC-MS analysis. Also included are specific examples of insect hydrocarbons that were assembled from 30 years of the literature, and these are intended to help with confirmation of confusing or contradictory structures.

Hydrocarbons alkanes methyl-branched hydrocarbons cuticular hydrocarbons insects GC-MS data retention indices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernier, U. R., Carlson, D. A., and Geden, C. J. 1998. Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. J. Am. Soc. Mass Spectrom. 9:320-332.Google Scholar
  2. Blomquist, G. J., Nelson, D. R., and DE Renobales, M. 1987. Chemistry, biochemistry and physiology of insect cuticular lipids. Arch. Insect Biochem. Physiol. 6:227-265.Google Scholar
  3. Brenner, R. J., Carlson, D. A., Roth, L. M., and Patterson, R. S. 1993. Morphological and chemotaxonomic identification of Blattella cockroaches (Blattaria: Blattellidae) from Taiwan and selected South Pacific basin locations. Invertebr. Taxon. 7:1205-1219.Google Scholar
  4. Carlson, D. A., and Brenner, R. J. 1988. Cuticular hydrocarbons of North American Blattella for identification of all life stages. Ann. Entomol. Soc. Am. 81:711-723.Google Scholar
  5. Carlson, D. A., and Langley, P. A. 1986. Tsetse alkenes: Appearance of novel sex-specific compounds as an effect of mating. J. Insect Physiol. 32:781-790.Google Scholar
  6. Carlson, D. A., and Yocom, S. R. 1986. Cuticular hydrocarbons from six species of fruit flies. Arch. Insect Biochem. Physiol. 3:397-412.Google Scholar
  7. Carlson, D. A., Langley, P. A., and Huyton, P. 1978. A sex pheromone in the tsetse fly: Isolation, identification and synthesis. Science 201:750-753.Google Scholar
  8. Carlson, D. A., Milstrey, S. K., and Narang, S. K. 1993. Genetic classification of the tsetse flies using cuticular hydrocarbons. Bull. Entomol. Res. 83:507-515.Google Scholar
  9. Carlson, D. A., Reinert, J. F., Bernier, U. R., Sutton, B. D., and Seawright, J. A. 1997. Analysis of the cuticular hydrocarbons among species of the Anopheles quadrimaculatus complex (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 13(Suppl):103-111.Google Scholar
  10. De Renobales, M., Nelson, D. R., and Blomquist, G. J. 1991. Cuticular lipids, pp. 240-251, in K. Binnington and A. Retnakaran (eds.). Physiology of the Insect Epidermis. CSIRO Publications, East Melbourne, Victoria, Australia.Google Scholar
  11. Geden, C. J., Bernier, U. R., Carlson, D. A., and Sutton, B. D. 1998. Identification of Muscidifurax spp., parasitoids of muscoid flies, by composition patterns of cuticular hydrocarbons. Biol. Control 12:200-207.Google Scholar
  12. Haverty, M. I., Page, M., Nelson, L. J., and Blomquist, G. J. 1988. Cuticular hydrocarbons of dampwood termites, Zootermopsis: Intra-and intercolony variation and potential as taxonomic characters. J. Chem. Ecol. 14:1035-1058.Google Scholar
  13. Haverty, M. I., Nelson, L. J., and Page, M. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. Similarities and origins of introductions. J. Chem. Ecol. 16:1635-1647.Google Scholar
  14. Haverty, M. I., Forschler, B. T., and Nelson, L. J. 1996. An assessment of the taxonomy of Reticulitermes (Isoptera: Rhinotermitidae) from the Southeastern United States based on cuticular hydrocarbons. Sociobiology 28:287-318.Google Scholar
  15. Hupe, K. P. 1965. A nomogram for the determination of the retention index. J. Gas Chromatogr. 3:12-14.Google Scholar
  16. Kissin, Y. V., and Feulmer, G. P. 1986. Gas chromatographic analysis of alkyl-substituted paraffins. J. Chromatogr. Sci. 24:53-59.Google Scholar
  17. Kissin, Y. V., Feulmer, G. P., and Payne, W. B. 1986. Gas chromatographic study of polymethyl-substituted alkanes. J. Chromatogr. Sci. 24:164-169.Google Scholar
  18. Kovats, E. 1965. Gas chromatographic comparison of organic substances in the retention index system. Adv. Chromatogr. 1:229-247.Google Scholar
  19. Lange, C., Basselier, J.-J., Bagneres, A.-G., Escoubas, P., Lemaire, M., Lenoir, A., Clement, J.-L., Bonavita-Cougourdan, A., Trabalon, M., and Kampan, M. 1989. Strategy for the analysis of cuticular hydrocarbon waxes from insects using gas chromatography/mass spectrometry with electron impact and chemical ionization. Biomed. Environ. Mass Spectrom. 18:787-800.Google Scholar
  20. Lockey, K. 1988. Review. Lipids of the insect cuticle: Origin, composition and function. Comp. Biochem. Physiol. 898:595-645.Google Scholar
  21. McDowell, P. G., Whitehead, D. L., and Chaudhury, F. B. 1981. The isolation and identification of the cuticular sex-stimulant pheromone of the tsetse Glossina pallidipes Austen (Diptera: Glossinidae). Insect Sci. Appl. 2:181-187.Google Scholar
  22. Nelson, D. R. 1978. Long chain methyl-branched hydrocarbons: Occurrence, biosynthesis and function. Adv. Insect Physiol. 13:1-33.Google Scholar
  23. Nelson, D. R. 1993. Methyl branched lipids in insects, pp. 271-315, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, Nebraska.Google Scholar
  24. Nelson, D. R., and Blomquist, G. J. 1995. Insect waxes, pp. 1-90, in R. J. Hamilton (ed.). Waxes: Chemistry, Molecular Biology and Functions. The Oily Press, Dundee, Scotland.Google Scholar
  25. Nelson, D. R., and Carlson, D. A. 1986. Cuticular hydrocarbons of the tsetse flies Glossina morsitans, G. austeni and G. pallidipes. Insect Biochem. 16:403-416.Google Scholar
  26. Nelson, D. R., and Sukkestad, D. R. 1970. Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm. Biochemistry 9:4601-4611.Google Scholar
  27. Nelson, D. R., Sukkestad, D. R., and Zaylskie, R. G. 1972. Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm. J. Lipid Res. 13:413-421.Google Scholar
  28. Nelson, D. R., Carlson, D. A., and Fatland, C. L. 1988. Cuticular hydrocarbons of the tsetse flies, II: G. fuscipes fuscipes, G. palpalis palpalis, G. p. gambiensis, G. tachinoides, and G. brevipalpis, J. Chem. Ecol. 14:963-987.Google Scholar
  29. Page, M., Nelson, L. J., Blomquist, G. J., and Seybold, S. J. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23:1053-1098.Google Scholar
  30. Pomonis, J. G. 1989. Cuticular hydrocarbons of the screwworm Cochliomyia homnivorax (Diptera: Calliphoridae). Isolation, identification, and quantification as a function of age, sex, and irradiation. J. Chem. Ecol. 15:2301-2317.Google Scholar
  31. Pomonis, J. G., Nelson, D. R., and Fatland, C. L. 1980. Insect hydrocarbons. 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between groups on fragmentation. J. Chem. Ecol. 6:965-972.Google Scholar
  32. Pomonis, J. G., Nelson, D. R., and Fatland, C. L. 1989. Synthetic methyl and dimethylalkanes. Kovats indices, [13C]NMR and mass spectra of some methyl pentacosanes and 2,X-dimethylheptacosanes. J. Chem. Ecol. 15:2319-2333.Google Scholar
  33. Sutton, B. D., and Carlson, D. A. 1997a. Cuticular hydrocarbons of Glossina III: Subgenera Glossina and Nemorhina. J. Chem. Ecol. 23:1291-1319.Google Scholar
  34. Sutton, B. D., and Carlson, D. A. 1997b. Cuticular hydrocarbon variation within the Tabanus nigrovittatus (Diptera: Tabanidae) species complex of the Atlantic Coast of North America. Ann. Entomol. Soc. Am. 90:542-549.Google Scholar
  35. Sutton, B. D., Carlson, D. A., Lockwood, J. A., and Nunamaker, R. A. 1996. Cuticular hydrocarbons of glacially-preserved Melanoplus (Orthoptera: Acrididae): Identification and comparison with hydrocarbons of M. sanguinipes (Fabr) and M. spretus Walsh. J. Orthop. Res. 5:1-12.Google Scholar
  36. Szafranek, J., Malinowski, E., Dubis, E., Hebanowska, E., Nawrot, J., Oksman, P., and Pihlaja, J. 1994. Identification of branched alkanes in lipids of Leptinotarsa decemlineata Say and Tribolium destructor by GC-MS: A comparison of main-beam and link-scanned spectra. J. Chem. Ecol. 29:2197-2212.Google Scholar
  37. Takeda, I. 1991. Use of literature values of temperature programmed retention indexes in qualitative analysis by isothermal gas chromatography. J. High Resolut. Chromatogr. Chromatogr. Commun. 14:824-828.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • David A. Carlson
    • 1
  • Ulrich R. Bernier
    • 1
  • Bruce D. Sutton
    • 2
  1. 1.USDA-ARSMedical and Veterinary Entomology Research LaboratoryGainesville
  2. 2.Advanced Diagnostics Laboratory andFlorida State Collection of Arthropods, Department of Plant Industry, State of Florida, Department of Consumer AffairsGainesville

Personalised recommendations