International Journal of Thermophysics

, Volume 24, Issue 1, pp 41–109 | Cite as

Equations of State for Technical Applications. II. Results for Nonpolar Fluids

  • R. Span
  • W. Wagner
Article

Abstract

New functional forms have been developed for multiparameter equations of state for non- and weakly polar fluids and for polar fluids. The resulting functional forms, which were established with an optimization algorithm which considers data sets for different fluids simultaneously, are suitable as a basis for equations of state for a broad variety of fluids. The functional forms were designed to fulfill typical demands of advanced technical applications with regard to the achieved accuracy. They are numerically very stable and their substance-specific coefficients can easily be fitted to restricted data sets. In this way, a fast extension of the group of fluids for which accurate empirical equations of state are available becomes possible. This article deals with the results found for the non- and weakly polar fluids methane, ethane, propane, isobutane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, argon, oxygen, nitrogen, ethylene, cyclohexane, and sulfur hexafluoride. The substance-specific parameters of the new equations of state are given as well as statistical and graphical comparisons with experimental data. General features of the new class of equations of state such as their extrapolation behavior and their numerical stability have been discussed in a preceding article. Results for typical polar fluids will be discussed in a subsequent article.

argon cyclohexane equation of state ethane ethylene fundamental equation Helmholtz energy isobutane methane n-butane n-heptane n-hexane n-octane n-pentane nitrogen nonpolar fluids oxygen propane sulfur hexafluoride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Span, H.-J. Collmann, and W. Wagner, Int. J. Thermophys. 19:491(1998).Google Scholar
  2. 2.
    R. Span and W. Wagner, Int. J. Thermophys. 24:1(2003).Google Scholar
  3. 3.
    R. Span and W. Wagner, Int. J. Thermophys. 24:111(2003).Google Scholar
  4. 4.
    R. Span, Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000).Google Scholar
  5. 5.
    U. Setzmann and W. Wagner, J. Phys. Chem. Ref. Data 20:1061(1991).Google Scholar
  6. 6.
    M. Jaeschke and P. Schley, Int. J. Thermophys. 16:1381(1995).Google Scholar
  7. 7.
    D. R. Douslin and R. H. Harrison, J. Chem. Thermodyn. 5:491(1973).Google Scholar
  8. 8.
    B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577(1987).Google Scholar
  9. 9.
    E. Fransson, A. Barreau, and J. Vidal, J. Chem. Eng. Data 37:521(1992).Google Scholar
  10. 10.
    J. B. Opfell, B. H. Sage, and K. S. Pitzer, Ind. Eng. Chem. 11:2069(1956).Google Scholar
  11. 11.
    M. Gomez-Nieto and G. Thodos, Ind. Eng. Chem. Fundam. 16:254(1977).Google Scholar
  12. 12.
    J. H. McMicking and W. B. Kay, Proc. Am. Pet. Inst., Sect. 3, 45:75(1965).Google Scholar
  13. 13.
    C. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28:779(1999).Google Scholar
  14. 14.
    R. Schmidt and W. Wagner, Fluid Phase Equil. 19:175(1985).Google Scholar
  15. 15.
    R. Span, E. W. Lemmon, R. T Jacobsen, and W. Wagner, Int. J. Thermophys. 19:1121(1998).Google Scholar
  16. 16.
    J. Smukala, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 29:1053(2000).Google Scholar
  17. 17.
    S. G. Penoncello, R. T Jacobsen, and A. R. H. Goodwin, Int. J. Thermophys. 16:519(1995).Google Scholar
  18. 18.
    W. A. Cole and K. M. de Reuck, Int. J. Thermophys. 11:189(1990).Google Scholar
  19. 19.
    N. Kurzeja, Th. Tielkes, and W. Wagner, The Nearly Classical Behavior of a Pure Fluid on the Critical Isochore Very Near the Critical Point under the Influence of Gravity, in W. M. Haynes, ed., Proc. 13th Symp. Thermophys. Prop., Preprint Volume, Boulder, Colorado (1997).Google Scholar
  20. 20.
    H. Preston-Thomas, Metrologia 12:7(1990).Google Scholar
  21. 21.
    R. L. Rusby, J. Chem. Thermodyn. 23:1153(1990).Google Scholar
  22. 22.
    T. B. Coplen, J. Phys. Chem. Ref. Data 26:1239(1997).Google Scholar
  23. 23.
    E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 17:1795(1988).Google Scholar
  24. 24.
    P. J. Mohr and B. N. Taylor, J. Phys. Chem. Ref. Data 28:1713(1999).Google Scholar
  25. 25.
    W. Wagner and K. M. de Reuck, International Thermodynamic Tables of the Fluid State–13–Methane (Blackwell, Oxford, 1996).Google Scholar
  26. 26.
    H. W. SchampJr., E. A. Mason, A. C. B. Richardson, and A. Altman, Phys. Fluids 1:329(1958).Google Scholar
  27. 27.
    D. R. Douslin, R. H. Harrison, R. T. Moore, and J. P. McCullough, J. Chem. Eng. Data 9:358(1964).Google Scholar
  28. 28.
    G. A. Pope, Calculation of Argon, Methane and Ethane Virial Coefficients at Low Reduced Temperatures Based on Data Obtained by Isochorically Coupled Burnett Experiments (Ph.D. thesis, Rice University, 1972).Google Scholar
  29. 29.
    D. R. Roe, Thermodynamic Properties of Gases and Gas Mixtures at Low Temperatures and High Pressures (Ph.D. thesis, University of London, 1972).Google Scholar
  30. 30.
    R. D. Goodwin, The Thermophysical Properties of Methane from 90 to 500K at Pressures up to 700bar, Nat. Bur. Stand. (US), Tech. Note 653 (1974).Google Scholar
  31. 31.
    N. J. Trappeniers, T. Wassenaar, and J. C. Abels, Physica A 98:289(1979)Google Scholar
  32. 32.
    J. Mollerup, J. Chem. Thermodyn. 17:489(1985).Google Scholar
  33. 33.
    H. J. Achtermann, T. K. Bose, H. Rögner, and J. M. St.-Arnaud, Int. J. Thermophys. 7:709(1986).Google Scholar
  34. 34.
    R. Kleinrahm, W. Duschek, and W. Wagner, J. Chem. Thermodyn. 18:1103(1986).Google Scholar
  35. 35.
    R. Kleinrahm, W. Duschek, W. Wagner, and M. Jaeschke, J. Chem. Thermodyn. 20:621(1988).Google Scholar
  36. 36.
    M. Jaeschke and M. Hinze, Ermittlung des Realgasverhaltens von Methan und Stickstoff und deren Gemische im Temperaturbereich von 270 K bis 353 K und Drücken bis 30 MPa. Fortschr.-Ber. VDI, Reihe 6, 262(1991).Google Scholar
  37. 37.
    N. Pieperbeck, R. Kleinrahm, W. Wagner, and M. Jaeschke, J. Chem. Thermodyn. 23:175(1991).Google Scholar
  38. 38.
    H. J. Achtermann, J. Hong, W. Wagner, and A. Pruß, J. Chem. Eng. Data 37:414(1992).Google Scholar
  39. 39.
    G. Händel, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 24:685(1992).Google Scholar
  40. 40.
    B. A. Younglove, J. Res. Nat. Bur. Stand. 78:401(1974).Google Scholar
  41. 41.
    H. M. Roder, J. Res. Nat. Bur. Stand. A 80:739(1976).Google Scholar
  42. 42.
    W. van Dael, A. van Itterbeek, J. Thoen, and A. Cops, Physica 31:1643(1965).Google Scholar
  43. 43.
    A. van Itterbeek, J. Thoen, A. Cops, and W. van Dael, Physica 35:162(1967).Google Scholar
  44. 44.
    G. C. Straty, Cryogenics 14:367(1974).Google Scholar
  45. 45.
    G. C. Straty, Cryogenics 15:729(1975).Google Scholar
  46. 46.
    B. E. Gammon and D. R. Douslin, J. Chem. Phys. 64:203(1976).Google Scholar
  47. 47.
    V. G. Baidakov, A. M. Kaverin, and V. P. Skripov, J. Chem. Thermodyn. 14:1003(1982).Google Scholar
  48. 48.
    A. Sivaraman and B. E. Gammon, Speed of Sound Measurements in Natural Gas Fluids, GRI Report 86/0043 (1986).Google Scholar
  49. 49.
    A. R. H. Goodwin, Thermophysical Properties from the Speed of Sound (Ph.D. thesis, University of London, 1988).Google Scholar
  50. 50.
    W. Lemming, Experimentelle Bestimmung akustischer und thermischer Virialkoeffizienten von Arbeitsstoffen der Energietechnik. Fortschr.-Ber. VDI, Reihe 19, 32(1989).Google Scholar
  51. 51.
    J. P. M. Trusler and M. P. Zarari, J. Chem. Thermodyn. 24:973(1992).Google Scholar
  52. 52.
    D. Fawcett, Measurement and Prediction of Speed of Sound, with Application to Gas Flow Metering in Australian Natural Gases (Ph.D. thesis, Murdoch University, 1995).Google Scholar
  53. 53.
    J. P. M. Trusler and M. F. Costa Gomes, Final Report to GERG WG 1.3 (Imperial College, London, 1996).Google Scholar
  54. 54.
    R. A. Dawe and P. N. Snowdown, J. Chem. Eng. Data 19:220.Google Scholar
  55. 55.
    P. G. Grini, Flow Calorimetry and Enthalpy Increment Measurements for Natural Gases (Ph.D. thesis, University of Trondheim, 1994).Google Scholar
  56. 56.
    G. Owren, P. G. Grini, H. S. Maehlum, and O. Jorstad, Final Report to GERG WG 1.3 (University of Trondheim, 1996).Google Scholar
  57. 57.
    C. Day, M. Stephan, and L. R. Oellrich, J. Chem. Thermodyn. 29:949(1997).Google Scholar
  58. 58.
    R. Kleinrahm and W. Wagner, J. Chem. Thermodyn. 18:739(1986).Google Scholar
  59. 59.
    D. G. Friend, H. Ingham, and J. F. Ely, J. Phys. Chem. Ref. Data 20:275(1991).Google Scholar
  60. 60.
    P. Sliwinski, Z. Phys. Chem. N. F. 63:263(1969).Google Scholar
  61. 61.
    D. R. Douslin and R. H. Harrison, J. Chem. Thermodyn. 5:491(1973).Google Scholar
  62. 62.
    M. Funke, R. Kleinrahm, and W. Wagner, submitted to J. Chem. Thermodyn.Google Scholar
  63. 63.
    M. Funke, R. Kleinrahm, and W. Wagner, submitted to J. Chem. Thermodyn.Google Scholar
  64. 64.
    A. Michels and W. Nederbragt, Physica 6:656(1939).Google Scholar
  65. 65.
    A. Michels, W. van Straaten, and J. Dawson, Physica 20:17(1954).Google Scholar
  66. 66.
    G. C. Straty and R. Tsumura, J. Res. Nat. Bur. Stand. A 80:35(1976).Google Scholar
  67. 67.
    J. G. Young, M. S. Thesis, Texas A&M University (1978).Google Scholar
  68. 68.
    H. Mansoorian, K. R. Hall, J. C. Holste, and P. T. Eubank, J. Chem. Thermodyn. 13:1001(1981).Google Scholar
  69. 69.
    W.-W. R. Lau, A Continuosly Weighed Pycnometer Providing Densities for Carbon Dioxide + Ethane Mixtures Between 240 and 350 K at Pressures up to 35 MPa (Ph.D. thesis, Texas A&M University, 1986).Google Scholar
  70. 70.
    M. Jaeschke and A. E. Humphreys, The GERG Databank of High Accuracy Compressibility Measurements, GERG Tech. Monograph 4, VDI, Düsseldorf (1990).Google Scholar
  71. 71.
    X.-Y. Guo, R. Kleinrahm, and W. Wagner, Final report to Ruhrgas AG, Part I (Ruhr-Universität Bochum, 1992).Google Scholar
  72. 72.
    L. A. Weber, Int. J. Thermophys. 13:1011(1992).Google Scholar
  73. 73.
    H. Hou, J. C. Holste, and K. R. Hall, J. Chem. Eng. Data 41:344(1996).Google Scholar
  74. 74.
    A. F. Estrada-Alexanders and J. P. M. Trusler, J. Chem. Thermodyn. 29:991(1997).Google Scholar
  75. 75.
    R. Tsumura and G. C. Straty, Cryogenics 17:195(1977).Google Scholar
  76. 76.
    S. J. Boyes, The Speed of Sound in Gases with Application to Equations of State and Sonic Nozzles (Ph.D. thesis, University of London, 1992).Google Scholar
  77. 77.
    K. Bier, J. Kunze, and G. Maurer, J. Chem. Thermodyn. 8:857(1976).Google Scholar
  78. 78.
    R. Bender, Untersuchungen zur zwischenmolekularen Wechselwirkung in binären Gemischen niedriger Dichte (Ph.D. thesis, Universität Karlsruhe, 1982).Google Scholar
  79. 79.
    G. Ernst and U. E. Hochberg, J. Chem. Thermodyn. 21:407(1989).Google Scholar
  80. 80.
    A. W. Tickner and F. P. Lossing, J. Phys. Coll. Chem. 55:733(1951).Google Scholar
  81. 81.
    V. M. Miniovich and G. A. Sorina, Russ. J. Phys. Chem. 45:306(1971).Google Scholar
  82. 82.
    J. Regnier, J. Chim. Phys. Phys.-Chim. Biol. 69:942(1972).Google Scholar
  83. 83.
    G. F. Carruth and R. Kobayashi, J. Chem. Eng. Data 18:115(1973).Google Scholar
  84. 84.
    A. Fredenslund and J. Mollerup, J. Chem. Soc. Far. Trans. I:1653(1974).Google Scholar
  85. 85.
    A. K. Pal, G. A. Pope, Y. Arai, N. F. Carnahan, and R. Kobayashi, J. Chem. Eng. Data 21:394(1976).Google Scholar
  86. 86.
    D. A. Barclay, J. L. Fiebbe, and D. B. Manley, J. Chem. Eng. Data 27:135(1982).Google Scholar
  87. 87.
    J. Klosek and C. McKinley, Densities of Liquefied Natural Gas and of Low Molecular Weight Hydrocarbons. Proc. 1st. Int. Conf. LNG, Chicago (1968).Google Scholar
  88. 88.
    J. R. Tomlinson, Liquid Densities of Ethane, Propane, and Ethane-Propane Mixtures. Tech. Pub. TP-1, Nat. Gas Proc. Assoc., Tulsa (1971).Google Scholar
  89. 89.
    L. C. Kahre, J. Chem. Eng. Data 18:267(1973).Google Scholar
  90. 90.
    C. R. McClune, Cryogenics 16:289(1976).Google Scholar
  91. 91.
    W. M. Haynes and M. J. Hiza, J. Chem. Thermodyn. 9:179(1977).Google Scholar
  92. 92.
    J. E. Orrit and J. M. Laupretre, Adv. Cryo. Eng. 23:573(1978).Google Scholar
  93. 93.
    C. C. Luo and R. C. Miller, Cryogenics 21:85(1981).Google Scholar
  94. 94.
    M. W. Pestak, R. E. Goldstein, M. H. W. Chan, J. R. de Bruyn, D. A. Balzarini, and N. W. Ashcroft, Phys. Rev. B36:599(1987).Google Scholar
  95. 95.
    H. Miyamoto and K. Watanabe, Int. J. Thermophys. 21:1045(2000).Google Scholar
  96. 96.
    J. P. M. Trusler and M. P. Zarari, J. Chem. Thermodyn. 28:329(1996).Google Scholar
  97. 97.
    P. Dittmar, F. Schulz, and G. Strese, Chemie Ing. Technik 34:437(1962).Google Scholar
  98. 98.
    S. E. Babb and S. L. Robertson, J. Chem. Phys. 53:1097(1970).Google Scholar
  99. 99.
    J. F. Ely and R. Kobayashi, J. Chem. Eng. Data 23:221(1978).Google Scholar
  100. 100.
    W. Warowny, P. Wielopolski, and J. Stecki, Physica A 91:73(1978).Google Scholar
  101. 101.
    R. H. P. Thomas and R. H. Harrison, J. Chem. Eng. Data 27:1(1982).Google Scholar
  102. 102.
    W. M. Haynes, J. Chem. Thermodyn. 15:419(1983).Google Scholar
  103. 103.
    H. Kratzke and S. Müller, J. Chem. Thermodyn. 16:1157(1984).Google Scholar
  104. 104.
    K. E. Starling, Propane. In: M. Jaeschke and A. E. Humphreys, The GERG Databank of High Accuracy Compressibility Measurements. GERG Tech. Monograph 4, VDI, Düsseldorf (1990).Google Scholar
  105. 105.
    G. C. Straty and A. M. F. Palavra, J. Res. Nat. Bur. Stand. 89:375(1984).Google Scholar
  106. 106.
    A. Lacam, J. Recherches CNRS 34:25(1956).Google Scholar
  107. 107.
    B. A. Younglove, J. Res. Nat. Bur. Stand. 86:165(1981).Google Scholar
  108. 108.
    R. Niepmann, J. Chem. Thermodyn. 16:851(1984).Google Scholar
  109. 109.
    V. F. Yesavage, D. L. Katz, and J. E. Powers, J. Chem. Eng. Data 14:197(1969).Google Scholar
  110. 110.
    G. Ernst and J. Büsser, J. Chem. Thermodyn. 2:787(1970).Google Scholar
  111. 111.
    J. D. Kemp and C. J. Egan, J. Am. Chem. Soc. 60:1521(1938).Google Scholar
  112. 112.
    H. Kratzke, J. Chem. Thermodyn. 12:305(1980).Google Scholar
  113. 113.
    N. L. Helgeson and B. H. Sage, J. Chem. Eng. Data 12:47(1967).Google Scholar
  114. 114.
    I. M. Abdulagatov, L. N. Levina, Z. R. Zakaryaev, and O. N. Mamchenkova, J. Chem. Thermodyn. 27:1385(1995).Google Scholar
  115. 115.
    I. M. Abdulagatov, L. N. Levina, Z. R. Zakaryaev, and O. N. Mamchenkova, Fluid Phase Equil. 127:205(1997).Google Scholar
  116. 116.
    R. D. Goodwin and W. M. Haynes, Thermophysical Properties of Normal Butane from 135 to 700K at Pressures to 70MPa. Nat. Bur. Stand. Monograph 169, Boulder, Colorado (1982).Google Scholar
  117. 117.
    D. Gupta and P. T. Eubank, J. Chem. Eng. Data 42:961(1997).Google Scholar
  118. 118.
    M. B. Ewing, A. R. H. Goodwin, M. L. McGlashan, and J. P. M. Trusler, J. Chem. Thermodyn. 20:243(1988).Google Scholar
  119. 119.
    J. W. Magee and T. O. D. Lüddecke, Int. J. Thermophys. 19:129(1998).Google Scholar
  120. 120.
    J. A. Beattie, G. L. Simard, and G.-J. Su, J. Am. Chem. Soc. 61:24(1939).Google Scholar
  121. 121.
    R. H. Olds, H. H. Reamer, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem. 36:282(1944).Google Scholar
  122. 122.
    W. M. Haynes, J. Chem. Thermodyn. 15:801(1983).Google Scholar
  123. 123.
    J. G. Aston and G. H. Messerly, J. Am. Chem. Soc. 62:1917(1940).Google Scholar
  124. 124.
    B. P. Dailey and W. A. Felsing, J. Am. Chem. Soc. 65:44(1943).Google Scholar
  125. 125.
    W. Brostow, D. M. McEachern, and S. Perez-Guttierrez, J. Chem. Phys. 71:2716(1979).Google Scholar
  126. 126.
    W. B. Kay, Ind. Eng. Chem. 32:358(1940).Google Scholar
  127. 127.
    H. Holldorf and H. Knapp, Fluid Phase Equil. 40:113(1988).Google Scholar
  128. 128.
    W. D. Machin and P. D. Golding, J. Chem. Soc. Faraday Trans. I:2229(1989).Google Scholar
  129. 129.
    T. Sako, S. Horiguchi, H. Ichimaru, and S. Nakagawa, J. Chem. Eng. Data 42:169(1997).Google Scholar
  130. 130.
    H. Kratzke, S. Müller, M. Bohn, and R. Kohlen, J. Chem. Thermodyn. 17:283(1985).Google Scholar
  131. 131.
    M. B. Ewing, A. R. H. Goodwin, and J. P. M. Trusler, J. Chem. Thermodyn. 21:867(1989).Google Scholar
  132. 132.
    I. Cibulka and L. Hnedkovsky, J. Chem. Eng. Data 41:657(1996).Google Scholar
  133. 133.
    E. W. Lemmon and A. R. H. Goodwin, J. Phys. Chem. Ref. Data 29:1(2000).Google Scholar
  134. 134.
    B. H. Sage and W. N. Lacey, Ind. Eng. Chem. 34:730(1942).Google Scholar
  135. 135.
    J. A. Beattie, D. R. Douslin, and S. W. Levin, J. Chem. Phys. 19:948(1951).Google Scholar
  136. 136.
    J. A. Huff and T. M. Reed, J. Chem. Eng. Data 8:306(1963).Google Scholar
  137. 137.
    B. J. Mair, J. Res. Nat. Bur. Stand. 16:457(1932).Google Scholar
  138. 138.
    C. B. Willingham, W. J. Taylor, J. M. Pignocco, and F. D. Rossini, J. Res. Nat. Bur. Stand. 35:219(1945).Google Scholar
  139. 139.
    K. Li and L. N. Canjar, Chem. Eng. Prog. Symp. Ser. 49 (7):147(1953).Google Scholar
  140. 140.
    A. G. Osborn and D. R. Douslin, J. Chem. Eng. Data 19:114(1974).Google Scholar
  141. 141.
    B. R. Carney, Petroleum Refiner 21 (9):84(1942).Google Scholar
  142. 142.
    E. Bender, Equations of State Exactly Representing the Phase Behavior of Pure Substance In: C. F. Bonila, ed., Proc. 5th Symp. Thermophys. Prop., ASME, New York (1970), p. 227.Google Scholar
  143. 143.
    P. Sauermann, K. Holzapfel, J. Oprzynski, F. Kohler, W. Poot, and T. W. de Loos, Fluid Phase Equil. 112:249(1995).Google Scholar
  144. 144.
    I. M. Abdulagatov, A. R. Bazaev, R. K. Gasanov, and A. E. Ramazanova, J. Chem. Thermodyn. 28:1037(1996).Google Scholar
  145. 145.
    E. A. Kelso and W. A. Felsing, J. Am. Chem. Soc. 62:3132(1940).Google Scholar
  146. 146.
    D. E. Stewart, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem. 46:2529(1954).Google Scholar
  147. 147.
    E. Kuss and M. Taslimi, Chem. Ing. Tech. 42:1073(1970).Google Scholar
  148. 148.
    J. H. Dymond and K. J. Young, J. Chem. Thermodyn. 11:887(1979).Google Scholar
  149. 149.
    E. Kiran and Y. L. Sen, Int. J. Thermophys. 13:411(1992).Google Scholar
  150. 150.
    S. S. Susnar, C. J. Budziak, H. A. Hamza, and A. W. Neumann, Int. J. Thermophys. 13:443(1992).Google Scholar
  151. 151.
    G. Waddington and D. R. Douslin, J. Am. Chem. Soc. 69:2275(1947).Google Scholar
  152. 152.
    M. L. McGlashan and D. J. B. Potter, Proc. Royal Soc. A267:478(1962).Google Scholar
  153. 153.
    A. F. Hajjar, W. B. Kay, and G. F. Leverett, J. Chem. Eng. Data 14:377(1969).Google Scholar
  154. 154.
    V. Rodriguez, J. Pardo, M. C. Lopez, F. M. Royo, and J. S. Urieta, J. Chem. Eng. Data 38:350(1993).Google Scholar
  155. 155.
    A. H. N. Mousa, J. Chem. Thermodyn. 9:1063(1977).Google Scholar
  156. 156.
    S. A. Wieczorek and J. Stecki, J. Chem. Thermodyn. 10:177(1978).Google Scholar
  157. 157.
    H. Wolff, J. Szydlowski, and L. Dill-Staffenberger, J. Chem. Thermodyn. 12:641(1980).Google Scholar
  158. 158.
    H. Wolff and A. Shadiaky, Fluid Phase Equil. 7:309(1981).Google Scholar
  159. 159.
    S. Weiguo, A. X. Qin, P. J. McElroy, and A. G. Williamson, J. Chem. Thermodyn. 22:905(1990).Google Scholar
  160. 160.
    M. R. W. Maciel and A. Z. Francesconi, Fluid Phase Equil. 50:201(1989).Google Scholar
  161. 161.
    D. Fenclova and V. Dohnal, J. Chem. Thermodyn. 25:689(1993).Google Scholar
  162. 162.
    F. Vesely, L. Svab, R. Provaznik, and V. Svoboda, J. Chem. Thermodyn. 20:981(1988).Google Scholar
  163. 163.
    M. J. P. Muringer, N. J. Trappeniers, and S. N. Biswas, Phys. Chem. Liq. 14:273(1985).Google Scholar
  164. 164.
    T. F. Sun, S. A. R. C. Bominaar, C. A. ten Seldam, and S. N. Biswas, Ber. Bunsenges. Phys. Chem. 95:696(1991).Google Scholar
  165. 165.
    W. B. Nichols, H. H. Reamer, and B. H. Sage, Ind. Eng. Chem. 47:2219(1955).Google Scholar
  166. 166.
    I. M. Abdulagatov, Experimental results for the isochoric heat capacity of n‐heptane and n‐octane, Private communication, National Institute of Standards and Technology, Boulder, Colorado (1998).Google Scholar
  167. 167.
    L. B. Smith, J. A. Beattie, and W. C. Kay, J. Am. Chem. Soc. 59:1587(1937).Google Scholar
  168. 168.
    S. Toscani, P. Figuiere, and H. Szwarc, J. Chem. Thermodyn. 21:1263(1989).Google Scholar
  169. 169.
    N. S. Osborne and D. C. Ginnings, J. Res. Nat. Bur. Stand. 39:453(1947).Google Scholar
  170. 170.
    M. Zábranský and V. RůuzickaJr., J. Phys. Chem. Ref. Data 23:55(1994).Google Scholar
  171. 171.
    R. C. Castro-Gomez, K. R. Hall, J. C. Holste, B. E. Gammon, and K. N. Marsh, J. Chem. Thermodyn. 22:269(1990).Google Scholar
  172. 172.
    J. O. Hirschfelder, F. T. McClure, and I. F. Weeks, J. Chem. Phys. 10:201(1942).Google Scholar
  173. 173.
    J. A. Beattie and W. C. Kay, J. Am. Chem. Soc. 59:1586(1937).Google Scholar
  174. 174.
    A. F. Forziatti, W. R. Norris, and F. D. Rossini, J. Res. Nat. Bur. Stand. 43:555(1949).Google Scholar
  175. 175.
    M. W. Cook, Rev. Sci. Instrum. 29:399(1958).Google Scholar
  176. 176.
    J. H. McMicking, Vapor Pressures and Saturated Liquid and Vapor Densities of Isomeric Heptanes and Octanes (Ph.D. thesis, Ohio State University, 1961).Google Scholar
  177. 177.
    L. A. Weber, J. Chem. Eng. Data 45:173(2000).Google Scholar
  178. 178.
    R. Bravo, M. Pintos, and A. Amigo, J. Chem. Thermodyn. 23:905(1991).Google Scholar
  179. 179.
    I. G. de la Fuente, J. A. Gonzalez, J. C. Cobos, and C. Casanova, J. Chem. Eng. Data 37:535(1992).Google Scholar
  180. 180.
    B. Pittau, B. Maronglu, and S. Porcedda, J. Chem. Eng. Data 37:124(1992).Google Scholar
  181. 181.
    L. Romani, J. Peleteiro, T. P. Iglesias, E. Carballo, R. Escudero, and J. L. Legido, J. Chem. Eng. Data 39:19(1994).Google Scholar
  182. 182.
    W. A. Felsing and G. M. Watson, J. Am. Chem. Soc. 64:1822(1942).Google Scholar
  183. 183.
    M. S. Benson and J. Winnick, J. Chem. Eng. Data 16:154(1971).Google Scholar
  184. 184.
    T. S. Banipal, S. K. Garg, and J. C. Ahluwalia, J. Chem. Thermodyn. 23:923(1991).Google Scholar
  185. 185.
    M. Dix, J. M. N. A. Fareleira, Y. Takaishi, and W. A. Wakeham, Int. J. Thermophys. 12:357(1991).Google Scholar
  186. 186.
    Y. Tanaka, H. Hosokawa, H. Kubota, and T. Makita, Int. J. Thermophys. 12:245(1991).Google Scholar
  187. 187.
    A. R. H. Goodwin, C. H. Bradsell, and L. S. Toczylkin, J. Chem. Thermodyn. 28:637(1996).Google Scholar
  188. 188.
    J. Gregorowicz, K. Kiciak, and S. Malanowski, Fluid Phase Equil. 38:97(1987).Google Scholar
  189. 189.
    C. C. Chappelow, P. S. Snyder, and J. Winnick, J. Chem. Eng. Data 16:440(1971).Google Scholar
  190. 190.
    M. R. Lopez Alanon, M. Caceres, R. G. Rubio, and J. Nunez, J. Chem. Soc. Faraday Trans. 1 85:3425(1989).Google Scholar
  191. 191.
    K. S. Kumar, P. R. Naidu, W. E. Acre Jr., J. Chem. Eng. Data 39:2(1994).Google Scholar
  192. 192.
    R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 26:399(1994).Google Scholar
  193. 193.
    R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 26:383(1994).Google Scholar
  194. 194.
    J. Klimeck, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 30:1571(1998).Google Scholar
  195. 195.
    A. F. Estrada-Alexanders and J. P. M. Trusler, J. Chem. Thermodyn. 27:1075(1995).Google Scholar
  196. 196.
    A. F. Estrada-Alexanders and J. P. M. Trusler, Int. J. Thermophys. 17:1325(1996).Google Scholar
  197. 197.
    A. Michels, H. Wijker, and H. K. Wijker, Physica 15:627(1949).Google Scholar
  198. 198.
    S. F. Barreiros, J. C. G. Calado, P. Clancy, M. Nunes da Ponte, and W. B. Strett, J. Phys. Chem. 86:1722(1982).Google Scholar
  199. 199.
    S. N. Biswas, N. J. Trappeniers, P. J. Kortbeek, and C. A. ten Seldam, Rev. Sci. Inst. 59:470(1988).Google Scholar
  200. 200.
    J. Hoinkis, Untersuchungen zum thermischen Verhalten von binären Gasmischungen mit Kohlendioxid (Ph.D. thesis, Universität Karlsruhe, 1989).Google Scholar
  201. 201.
    C. Gladun, Cryogenics 11:205(1971).Google Scholar
  202. 202.
    M. A. Anisimov, B. A. Koval'chuk, V. A. Rabinovich, and V. A. Smirnov, Teplofiz. Svoistva Vesh. Mat. 8:237(1975).Google Scholar
  203. 203.
    M. A. Anisimov, B. A. Koval'chuk, V. A. Rabinovich, and V. A. Smirnov, Teplofiz. Svoistva Vesh. Mat. 12:86(1978).Google Scholar
  204. 204.
    I. S. Radovskii, Z. Prikl. Mech. Tech. Fiz. 3:159(1963).Google Scholar
  205. 205.
    R. A. Aziz, D. H. Bowman, and C. C. Lim, Can. J. Chem. 45:2079(1967).Google Scholar
  206. 206.
    D. H. Bowman, C. C. Lim, and R. A. Aziz, Can. J. Chem. 46:1175(1968).Google Scholar
  207. 207.
    L. L. Pitaevskaya, A. V. Bilevich, and N. B. Isakova, Rus. J. Phys. Chem. 43:1197(1969).Google Scholar
  208. 208.
    J. Thoen, E. Vangeel, and W. van Dael, Physica 45:339(1969).Google Scholar
  209. 209.
    J. Thoen, E. Vangeel, and W. van Dael, Physica 52:205(1971).Google Scholar
  210. 210.
    W. B. Streett and M. S. Costantino, Physica 75:283(1974).Google Scholar
  211. 211.
    Yu. L. Kachanov, B. E. Kanishchev, and L. L. Pitaevskaya, J. Eng. Phys. 44:1(1983).Google Scholar
  212. 212.
    P. J. Kortbeek, M. J. P. Muringer, N. J. Trappeniers, and S. N. Biswas, Rev. Sci. Inst. 56:1269(1985).Google Scholar
  213. 213.
    M. B. Ewing, and A. R. H. Goodwin, J. Chem. Thermodyn. 24:531(1992).Google Scholar
  214. 214.
    W. Wagner and K. M. de Reuck, International Thermodynamic Tables of the Fluid State–9–Oxygen (Blackwell, Oxford, 1987).Google Scholar
  215. 215.
    L. A. Weber, J. Res. Nat. Bur. Stand. A 74:93(1970).Google Scholar
  216. 216.
    L. A. Weber, Thermodynamic and Related Properties of Oxygen from the Triple Point to 300–K at Pressures to 1000–bar, NASA Ref. Publ. 1011, NBSIR 77-865 (1977).Google Scholar
  217. 217.
    W. Pentermann and W. Wagner, J. Chem. Thermodyn. 10:1161(1978).Google Scholar
  218. 218.
    R. D. Goodwin and L. A. Weber, J. Res. Nat. Bur. Stand. A 73:15(1969).Google Scholar
  219. 219.
    A. van Itterbeek and J. Zink, Appl. Sci. Res. A 7:375(1958).Google Scholar
  220. 220.
    A. van Itterbeek and W. van Dael, Bull. Int. Inst. Refrig. Annexe 295 (1958).Google Scholar
  221. 221.
    A. van Itterbeek and W. van Dael, Physica 28:861(1962).Google Scholar
  222. 222.
    G. C. Straty and B. A. Younglove, J. Chem. Thermodyn. 5:305(1973).Google Scholar
  223. 223.
    J. Anscin, Can. J. Phys. 52:2305(1974).Google Scholar
  224. 224.
    W. Wagner, J. Ewers, and W. Pentermann, J. Chem. Thermodyn. 8:1049(1976).Google Scholar
  225. 225.
    J. H. C. Lisman and W. H. Keesom, Physica 2:901(1935).Google Scholar
  226. 226.
    R. A. H. Pool, G. Saville, T. M. Herrington, B. D. C. Shields, and L. A. K. Staveley, Trans. Farraday Soc. 58:1692(1962).Google Scholar
  227. 227.
    P. Nowak, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 29:1137(1997).Google Scholar
  228. 228.
    J. Klimeck, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 30:1571(1998).Google Scholar
  229. 229.
    P. Nowak, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 29:1157(1997).Google Scholar
  230. 230.
    M. B. Ewing and J. P. M. Trusler, Physica A 184:415(1992).Google Scholar
  231. 231.
    M. F. Costa Gomes and J. P. M. Trusler, J. Chem. Thermodyn. 30:527(1998).Google Scholar
  232. 232.
    J. W. Magee, J. Res. NIST 96:725(1991).Google Scholar
  233. 233.
    P. G. Grini and G. A. Owren, J. Chem. Thermodyn. 29:37(1997).Google Scholar
  234. 234.
    R. Span, E. W. Lemmon, R. T Jacobsen, W. Wagner, and A. Yokozeki, J. Phys. Chem. Ref. Data 29:1361(2000).Google Scholar
  235. 235.
    A. Michels, H. Wouters, and J. DeBoer, Physica 3:585(1936).Google Scholar
  236. 236.
    J. Saurel, J. Rech. CNRS 42:22(1958).Google Scholar
  237. 237.
    G. C. Straty and D. E. Diller, J. Chem. Thermodyn. 12:927(1980).Google Scholar
  238. 238.
    W. Duschek, R. Kleinrahm, W. Wagner, and M. Jaeschke, J. Chem. Thermodyn. 20:1069(1988).Google Scholar
  239. 239.
    A. Fenghour, W. A. Wakeham, D. Ferguson, A. C. Scott, and J. T. R. Watson, J. Chem. Thermodyn. 25:831(1993).Google Scholar
  240. 240.
    L. A. Weber, J. Chem. Thermodyn. 13:389(1981).Google Scholar
  241. 241.
    E. R. Dobbs and L. Finegold, J. Acoust. Soc. Am. 32:1215(1960).Google Scholar
  242. 242.
    A. van Itterbeek and W. van Dael, Cryogenics 1:226(1961).Google Scholar
  243. 243.
    A. A. Vassermann and V. I. Selevanyuk, Akust. Zh. 13:131(1967).Google Scholar
  244. 244.
    B. A. Younglove and R. C. McCarty, J. Chem. Thermodyn. 12:1121(1980).Google Scholar
  245. 245.
    P. J. Kortbeek, N. J. Trappeniers, and S. N. Biswas, Int. J. Thermophys. 9:103(1988).Google Scholar
  246. 246.
    D. T. Mage, M. L. JonesJr., D. L. Katz, and J. R. Roebuck, Chem. Eng. Prog. 59:61(1963).Google Scholar
  247. 247.
    W. van Dael, A. van Itterbeek, A. Cops, and J. Thoen, Physica 32:611(1966).Google Scholar
  248. 248.
    G. T. Furukawa and R. E. McCoskey, The Condensation Line of Air and Heats of Vaporization of Oxygen and Nitrogen, National Advisory Committee for Aeronautics, Tech. Note No. 2969 (1953).Google Scholar
  249. 249.
    R. T Jacobsen, M. Jahangiri, R. B. Stewart, R. D. McCarty, J. M. H. Levelt Sengers, H. J. White Jr., J. V. Sengers, and G. A. Olchowy, International Thermodynamic Tables of the Fluid State, Vol.10: Ethylene (Blackwell Scientific Pubs., Oxford, 1988).Google Scholar
  250. 250.
    P. Nowak, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 28:1423(1996).Google Scholar
  251. 251.
    P. Nowak, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 28:1441(1996).Google Scholar
  252. 252.
    P. Claus, R. Kleinrahm, and W. Wagner, pρT Data for Ethylene, Private communication, Ruhr-Universität Bochum (1998).Google Scholar
  253. 253.
    A. Michels and M. Geldermans, Physica 9:967(1942).Google Scholar
  254. 254.
    L. Turlington and J. J. McKetta, Petroleum Refiner 40:245(1961).Google Scholar
  255. 255.
    W. Thomas and M. Zander, Z. angew. Phys. 20:417(1966).Google Scholar
  256. 256.
    E. A. Golovskii, V. A. Elema, V. A. Zagoruchenko, and V. A. Tsymarnii, Izv. Vys. Uchebuykh Zavedenii, Neft Gaz 12:85(1969).Google Scholar
  257. 257.
    E. A. Golovskii, V. A. Zagoruchenko, and V. A. Tsymarnii, Izv. Vys. Uchebuykh Zavedenii, Neft Gaz. 16:73(1973).Google Scholar
  258. 258.
    E. A. Golovskii, E. P. Mitsevich, and V. A. Tsymarnii, Izv. Vys. Uchebuykh Zavedenii, Neft Gaz. 19:95(1976).Google Scholar
  259. 259.
    D. R. Douslin and R. H. Harrison, J. Chem. Thermodyn. 8:301(1976).Google Scholar
  260. 260.
    N. J. Trappeniers, T. Wassenaar, and G. J. Wolkers, Physica A 82:305(1976).Google Scholar
  261. 261.
    J. R. Hastings, J. M. H. Levelt Sengers, and F. W. Balfour, J. Chem. Thermodyn. 12:1009(1980).Google Scholar
  262. 262.
    G. C. Straty, J. Chem. Thermodyn. 12:709(1980).Google Scholar
  263. 263.
    W. Thomas and M. Zander, Int. J. Thermophys. 1:383(1980).Google Scholar
  264. 264.
    J. M. H. Levelt Sengers and J. R. Hastings, Int. J. Thermophys. 2:269(1981).Google Scholar
  265. 265.
    J. C. G. Calado, P. Clancy, A. Heintz, and W. B. Streett, J. Chem. Eng. Data 27:376(1982).Google Scholar
  266. 266.
    M. Waxman, Ethylene PVT Data. Private communication to M. Jahangiri (1983). Values published in Ref. 249.Google Scholar
  267. 267.
    J. Mollerup, J. Chem. Thermodyn. 17:489(1985).Google Scholar
  268. 268.
    H. J. Achtermann, H. D. Baehr, and T. K. Bose, J. Chem. Thermodyn. 21:1023(1989).Google Scholar
  269. 269.
    H. J. Achtermann, T. K. Bose, and G. Magnus, Int. J. Thermophys. 11:133(1990).Google Scholar
  270. 270.
    L. A. Weber, J. Chem. Eng. Data 27:203(1982).Google Scholar
  271. 271.
    Y. A. Soldatenko and E. K. Dregulyas, Teplofiz. Svoistva Vesh. 3:344(1968).Google Scholar
  272. 272.
    B. E. Gammon, Values of the Velocity of Sound in Ethylene and Related Variables. In: Industrial needs for critically evaluated state data of ethylene and related substances, Minutes Ninth Mtg. Joint Industry-Government Project Thermophys. Props. Ethylene, Boulder, Colorado (1978).Google Scholar
  273. 273.
    J. B. Mehl and M. R. Moldover, J. Chem. Phys. 74:4062(1981).Google Scholar
  274. 274.
    E. K. Dregulyas and A. F. Stavtsev, High Temp. 20:210(1982).Google Scholar
  275. 275.
    E. K. Dregulyas and A. F. Stavtsev, High Temp. 22:849(1985).Google Scholar
  276. 276.
    K. Watanabe, Experimental Isobaric Heat Capacity Values for Ethylene, Private communication to R. B. Stewart (1980). Values published in M. Jahangiri, R. T Jacobsen, R. B. Stewart, and R. D. McCarty, J. Phys. Chem. Ref. Data 15:593 (1986).Google Scholar
  277. 277.
    R. B. Bird, E. L. Spotz, and J. O. Hirschfelder, J. Chem. Phys. 18:1395(1950).Google Scholar
  278. 278.
    R. D. Goodwin and W. M. Haynes, Thermophysical Properties of Isobutane from 114 to 700K at Pressures to 70MPa. Nat. Bur. Stand. Tech. Note 1051, Boulder, Colorado (1982).Google Scholar
  279. 279.
    J. C. Nieuwoudt, B. L. Neindre, R. Tufeu, and J. V. Sengers, J. Chem. Eng. Data 32:1(1987).Google Scholar
  280. 280.
    M. B. Ewing and A. R. H. Goodwin, J. Chem. Thermodyn. 23:1107(1991).Google Scholar
  281. 281.
    T. R. Das and N. R. Kuloor, Indian J. Tech. 5:40(1967).Google Scholar
  282. 282.
    M. Waxman, PVT data for isobutane, Private communication to R. D. Goodwin and W. M. Haynes; Values published in Ref. 278.Google Scholar
  283. 283.
    W. M. Haynes, J. Chem. Eng. Data 28:367(1983).Google Scholar
  284. 284.
    G. S. Parks, C. H. Shomate, W. D. Kennedy, and B. L. Crawford, J. Chem. Phys. 5:359(1937).Google Scholar
  285. 285.
    J. G. Aston, R. M. Kennedy, and S. C. Schumann, J. Am. Chem. Soc. 62:2059(1940).Google Scholar
  286. 286.
    J. F. Connolly, J. Phys. Chem. 66:1082(1962).Google Scholar
  287. 287.
    K. Steele, B. E. Poling, and D. B. Manley, J. Chem. Eng. Data 21:399(1976).Google Scholar
  288. 288.
    J. A. Martinez-Ortiz and D. B. Manley, J. Chem. Eng. Data 23:165(1978).Google Scholar
  289. 289.
    L. A. Weber, J. Chem. Eng. Data 34:171(1989).Google Scholar
  290. 290.
    G.-I. Kaminishi, C. Yokoyama, and S. Takahashi, Sekiyu Gakkaishi 31:433(1988).Google Scholar
  291. 291.
    J. M. H. Levelt Sengers, B. Kamgar-Parsi, and J. V. Sengers, J. Chem. Eng. Data 28:354(1983).Google Scholar
  292. 292.
    Y. L. Rastorguev, B. A. Grigor'ev, and R. M. Murdaev, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 18:66(1975).Google Scholar
  293. 293.
    E. Bich, G. Opel, R. Pietsch, R. Schmal, and E. Vogel, Z. Phys. Chem. 265:101(1984).Google Scholar
  294. 294.
    T. F. Sun, P. J. Kortbeek, N. J. Trappeniers, and S. N. Biswas, Phys. Chem. Liq. 16:163(1987).Google Scholar
  295. 295.
    E. A. Moelwyn-Hughes and P. L. Thorpe, Proc. Royal Soc. A 278:574(1963).Google Scholar
  296. 296.
    A. Asenbaum and E. Wilhelm, Adv. Mol. Relax. Int. Proc. 22:187(1982).Google Scholar
  297. 297.
    E. W. Wilhelm, R. Schano, G. Becker, G. H. Findenegg, and F. Kohler, Trans. Far. Soc. 65:1443(1968).Google Scholar
  298. 298.
    S. Prakash and S. B. Srivastav, J. Chem. Thermodyn. 7:997(1975).Google Scholar
  299. 299.
    T. Takagi, Kyoto Techn. Univ. Sci. Technol. 25:51(1976).Google Scholar
  300. 300.
    O. Kiyohara, C. J. Halpin, and G. C. Benson, J. Chem. Thermodyn. 10:721(1978).Google Scholar
  301. 301.
    J. Nath and B. Narain, J. Chem. Eng. Data 27:308(1982).Google Scholar
  302. 302.
    J. Nath and A. P. Dixit, J. Chem. Eng. Data 29:313(1984).Google Scholar
  303. 303.
    G. S. Parks, H. M. Huffman, and S. B. Thomas, J. Am. Chem. Soc. 52:1032(1930).Google Scholar
  304. 304.
    R. A. Rührwein and H. M. Huffman, J. Am. Chem. Soc. 6:1620(1943).Google Scholar
  305. 305.
    L. I. Safir, A. A. Gerasimov, and B. A. Grigor'ev, Izv. Vyssh. Uchebn. Zaved. Gaz. 11: 11, 61(1975).Google Scholar
  306. 306.
    Y. L. Rastorguev, B. A. Grigor'ev, and L. I. Safir, Izv. Sev. Kavk. Nauchn. Tsentra Vyssh. Shk. 4:107(1976).Google Scholar
  307. 307.
    R. M. Murdaev, Elekt. Auto. Ob'ektov. Neft. Prom-sti, Grozngi 217 (1980).Google Scholar
  308. 308.
    F. Vesley, M. Zabransky, V. Svoboda, and J. Pick, Collect. Czech. Chem. Comm. 44:3529(1979).Google Scholar
  309. 309.
    V. M. Tatevskiy, Physico-chemical Properties of Individual Hydrocarbons. Gostoptech Press (1960). See also: N. B. Vargatik, Handbook of Physical Properties of Liquids and Gases, 2nd edn. (Hemisphere Publishing, Washington, 1975).Google Scholar
  310. 310.
    K. Ridgway and A. Butler, J. Chem. Eng. Data 12:509(1967).Google Scholar
  311. 311.
    M. B. Ewing, Excess Free Energies, Excess Enthalpies and Isothermal Compressibilities of Mixtures of Approximately Spherical Molecules (Ph.D. thesis, University of New England, 1974).Google Scholar
  312. 312.
    H. T. French, J. Sol. Chem. 12:869(1983).Google Scholar
  313. 313.
    J. Weclawski and A. Bylicki, Fluid Phase Equil. 12:143(1983).Google Scholar
  314. 314.
    S. Young and E. C. Fortey, J. Chem. Soc. Trans. 75:873(1899).Google Scholar
  315. 315.
    H. H. Reamer and B. H. Sage, J. Chem. Eng. Data 2:9(1957).Google Scholar
  316. 316.
    J. Fortier, G. C. Benson, and P. Picker, J. Chem. Thermodyn. 8:289(1976).Google Scholar
  317. 317.
    D. S. Kurumov, R. M. Murdaev, and B. A. Grigor'ev, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 20:75(1977).Google Scholar
  318. 318.
    J. R. Goates, J. B. Ott, and R. B. Grigg, J. Chem. Thermodyn. 11:497(1979).Google Scholar
  319. 319.
    M. Karvo, Finn. Chem. Lett. 196 (1980).Google Scholar
  320. 320.
    T. F. Sun, P. J. Kortbeek, N. J. Trappeniers, and S. N. Biswas, J. Chem. Thermodyn. 20:1089(1988).Google Scholar
  321. 321.
    S. K. Shibata and S. I. Sandler, J. Chem. Eng. Data 34:419(1989).Google Scholar
  322. 322.
    A. Arce, A. Dominguez, and J. Tojo, J. Chem. Eng. Data 35:30(1990).Google Scholar
  323. 323.
    D. Richon, S. Laugier, and H. Renon, J. Chem. Eng. Data 36:104(1991).Google Scholar
  324. 324.
    A. M. Kerimov and T. A. Apaev, Fluid Mech.–Sov. Res. 3:100(1974).Google Scholar
  325. 325.
    B. A. Grigor'ev, R. M. Murdaev, and Y. L. Rastorguev, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 18:61(1975).Google Scholar
  326. 326.
    K. M. de Reuck, R. J. B. Craven, and W. A. Cole, Report on the Development of an Equation of State for Sulphur Hexafluoride, Report PC/D44, Imperial College Thermodyn. Tables Project Centre, London (1991).Google Scholar
  327. 327.
    M. Funke, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 34:717(2002).Google Scholar
  328. 328.
    M. Funke, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 34:735(2002).Google Scholar
  329. 329.
    W. H. Mears, E. Rosenthal, and J. V. Sinka, J. Phys. Chem. 73:2254(1969).Google Scholar
  330. 330.
    S. A. Ulybin and E. P. Zherdev, Dokl. Akad. Nauk. 191:572(1970).Google Scholar
  331. 331.
    K. Watanabe, H. Watanabe, and K. Oguchi, Proc. 7th Symp. Thermophys. Prop. (Am. Soc. Mech. Eng., New York, 1977).Google Scholar
  332. 332.
    M. A. Likhatskii, V. V. Altunin, and N. Y. Filatov, Therm. Eng. 29:576(1982).Google Scholar
  333. 333.
    S. N. Biswas, N. J. Trappeniers, and J. H. B. Hoogland, Physica A 126:384(1984).Google Scholar
  334. 334.
    J. Mollerup, J. Chem. Eng. Data 30:21(1985).Google Scholar
  335. 335.
    R. Freyhof, Untersuchungen zur Temperaturabhängigkeit des thermischen Verhaltens binärer Gasmischungen in einem großen Dichtebereich (Ph.D. thesis, TH Karlsruhe, 1986).Google Scholar
  336. 336.
    W. Blanke, H. Häusler, and R. Weiss, Int. J. Thermophys. 9:791(1988).Google Scholar
  337. 337.
    T. Kamimura, A. Iso, Y. Higashi, M. Uematsu, and K. Watanabe, Rev. Sci. Instrum. 60:3055(1989).Google Scholar
  338. 338.
    R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 24:953(1992).Google Scholar
  339. 339.
    W. Blanke, G. Klingenberg, and R. Weiß, PTB-Mitteilungen 103:27(1993).Google Scholar
  340. 340.
    V. Vacek and J. A. Zollweg, Fluid Phase Equil. 88:219(1993).Google Scholar
  341. 341.
    A. M. Sirota, Y. A. Khromykh, and I. I. Goldstein, Therm. Eng. 26:733(1979).Google Scholar
  342. 342.
    K. Bier, G. Maurer, and H. Sand, Ber. Bunsenges. Phys. Chem. 84:430(1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • R. Span
    • 1
  • W. Wagner
    • 2
  1. 1.Lehrstuhl für Thermodynamik und Energietechnik, Universität PaderbornPaderbornGermany
  2. 2.Lehrstuhl für Thermodynamik, Ruhr-Universität BochumBochumGermany

Personalised recommendations