Genetica

, Volume 117, Issue 1, pp 27–35 | Cite as

Common Features of Segregation Distortion in Plants and Animals

  • Douglas R. Taylor
  • Pär K. Ingvarsson
Article

Abstract

Segregation distortion is increasingly recognized as a potentially powerful evolutionary force. This runs counter to the perception that non-Mendelian genes are rare genetic curiosities, a view that seems to be supported by the near ubiquity of the Mendelian system of inheritance. There are several reasons why segregation distortion may be more important than is evidenced by known empirical examples. One possibility is that the types of segregation distorters we have found are only a subset of a broader range of non-Mendelian systems, many of which go undetected. In this paper, we review what is known about the sex-linked meiotic drive system in the plant, Silene latifolia, and present some data on the mechanism of segregation distortion. We outline the general features that segregation distorters in plants and animals have in common. In some cases, such as the paucity of systems that directly alter meiotic segregation, there are likely to be inherent constraints on the range of systems that can possibly occur. Other generalities, however, support the notion that many forms of meiotic drive are possible, and that the known examples of segregation distortion are likely to be only subset of those that can possibly occur. Non-Mendelian genes may therefore have greater evolutionary importance than their current abundance in nature would suggest.

Drosophila meiotic drive segregation distortion sex ratio Silene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, H.M., 1987. Epidemiology of anther-smut infection of Silene alba caused by Ustilago violacea: patterns of spore deposition and disease incidence. J. Ecol. 78: 166–179.Google Scholar
  2. Alexander, H.M. & J. Antonovics, 1995. Spread of anther-smut disease (Ustilago violacea) and character correlations in a genetically variable experimental population of Silene alba. J. Ecol. 83: 783–794.Google Scholar
  3. Antonovics, J., P.H. Thrall, A.M. Jarosz & D. Stratton, 1994. Ecological genetics of metapopulations: the Silene-Ustilago plant pathogen system, pp. 146–170 in Ecological Genetics, edited by L. Real. Princeton University Press.Google Scholar
  4. Ardlie, K.G. & L.M. Silver, 1996. Low frequency of mouse t haplotypes in wild populations is not explained bymodifiers of meiotic drive. Genetics 144: 1787–1797.Google Scholar
  5. Atanassov, I., C. Delichiére, D.A. Filatov, D. Charlesworth, I. Negrutiu & F. Monéger, 2001. Analysis and evolution of two functional Y-linked loci in a plant sex chromosome system. Mol. Biol. Evol. 18: 2162–2168.Google Scholar
  6. Atlan, A., H. Mercot, C. Landre & C. Montchamp-Moreau, 1997. The sex-ratio trait in Drosophila simulans: geographical distribution of distortion and resistance. Evolution 51: 1886–1895.Google Scholar
  7. Baur, E., 1912. Ein Fall von geschlechtsbegrenzter Vererbung bei Melandrium album. Z.I.A.V. 8: 335–336.Google Scholar
  8. Beckenbach, A., J.W. Curtsinger & D. Policansky, 1982. Fruitless experiments with fruit flies: the 'sex ratio' chromosomes of D. pseudoobscura. Drosophila Information Service 58: 22.Google Scholar
  9. Buckler, E.S., IV, T.L. Phelps-Durr, C.S.K. Buckler, R.K. Dawe, J.F. Doebley & T.P. Holtsford, 1999. Meiotic drive of chromosomal knobs reshaped the Maize genome. Genetics 153: 415–426.Google Scholar
  10. Cameron, D.R. & R. Moav, 1957. Inheritance in Nicotiana tabacum. XXVII. Pollen killer, an alien genetic locus inducing abortion of microspores not carrying it. Genetics 42: 326–335.Google Scholar
  11. Capillon, C. & A. Altan, 1999. Evolution of X chromosomes and resistance factors in experimental populations of Drosophila simulans. Evolution 53: 506–517.Google Scholar
  12. Cazemajor, M., D. Joly & C. Montchamp-Moreau, 2000. Sex-ratio meiotic drive in Drosophila simulans is related to equatorial nondisjunction of the Y chromosome. Genetics 154: 229–236.Google Scholar
  13. Correns, C., 1917. Ein Fall experimenteller Verschiebung des Geschlechtsverhaltnisses. Sitzungsberichte der Koeniglichen Preussichen Akademie der Wissenschaften. 685–717.Google Scholar
  14. Correns, C., 1928. Bestimmung, Vererbung and Verteilung des Geschlechtes bei den hoheren Pflanzen. Handb. Vererbungsw. 2: 1–138.Google Scholar
  15. Donnison, I.S., J. Siroky, B. Vyskot, H. Saedler & S.R. Grant, 1996. Isolation of Y chromosome specific sequences from Silene latifolia and mapping of male sex-determining genes using representational difference analysis. Genetics 144: 1893–1901.Google Scholar
  16. Filatov, D.A., F. Monéger, I. Negrutiu & D. Charlesworth, 2000. Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature 404: 388–390.Google Scholar
  17. Frank, S.A., 1991. Divergence of meiotic drive suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution 45: 262–272.Google Scholar
  18. Hewitt, G.M., 1976. Meiotic drive for B-chromosomes in the primary oocytes of Mymeleotettix maculates (Orthoptera: Acridae). Chromosoma 56: 381–391.Google Scholar
  19. Hurst, G.D.D. & J.H. Werren, 2001. The role of selfish genetic elements in eukaryotic evolution. Nature Reviews 2: 597–606.Google Scholar
  20. Hurst, L.D. & A. Pomiankowski, 1991. Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane's Rule and related phenomena. Genetics 128: 841–858.Google Scholar
  21. Hurst, L.D., A. Atlan & B.O. Bengtsson, 1996. Genetic conflicts. Q. Rev. Biol. 71: 317–364.Google Scholar
  22. Jaenike, J., 1996. Sex-ratio meiotic drive in the Drosophila quinaria group. Am. Nat. 148: 237–254.Google Scholar
  23. Jaenike, J., 1999. Y-chromosome polymorphism in Drosophila. Evolution 53: 164–174.Google Scholar
  24. Jaenike, J., 2001. Sex chromosome meiotic drive. Annu. Rev. Ecol. Syst. 32: 25–49.Google Scholar
  25. Kayano, H. & M. Kimura, 1961. The maintenance of supernumerary chromosomes in wild populations of Lilium callosum by preferential segregation. Genetics 46: 1699–1712.Google Scholar
  26. Lawrence, C.W., 1963. Genetic studies on wild populations of Melandrium. II. Flowering time and plant weight. Heredity 18: 149–163.Google Scholar
  27. Loegering, W.G. & E.R. Sears, 1963. Distorted inheritance of stemrust resistance of timstein wheat caused by a pollen killing gene. Can. J. Genet. Cytol. 5: 67–72.Google Scholar
  28. Lovett Doust, J., G. O'Brien & L. Lovett Doust, 1987. Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae). Am. J. Bot. 74: 40–46.Google Scholar
  29. Lyons, E.E., D. Miller & T.R. Meagher, 1994. Sibship differences in sex ratio and gender dimorphism in Silene latifolia. I. Environmental and competitive effects. J. Hered. 85: 196–203.Google Scholar
  30. Lyons, E.E., N. Shah-Mahoney & L.A. Lombard, 1995. Evolutionary dynamics of sex ratio and gender dimorphism in Silene latifolia. II. Sex ratio and flowering status in a potentially male-biased population. J. Heredity. 86: 107–113.Google Scholar
  31. Lyttle, T.W., 1991. Segregation distorters. Annu. Rev. Genet. 25: 511–557.Google Scholar
  32. Lyttle, T.W., 1993. Cheaters sometimes prosper: distortion of Mendelian segregation by meiotic drive. Trends Genet. 9: 205–210.Google Scholar
  33. McCauley, D.E., 1994. Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba-implications for studies of gene flow in plants. Proc. Natl. Acad. Sci. USA 91: 8127–8131.Google Scholar
  34. McCauley, D.E., J.E. Stevens, P.A. Peroni & J.A. Raveill, 1995. The spatial distribution of chloroplast DNA and allozyme polymorphisms within a population of Silene alba (Caryophyllaceae). Am. J. Bot. 83: 727–731.Google Scholar
  35. Meagher, T.R., 1992. The quantitative genetics of sexual dimorphism in Silene latifolia (Caryophyllaceae). I. Genetic variation. Evolution 46: 445–457.Google Scholar
  36. Meagher, T.R., 1994. The quantitative genetics of sexual dimorphism in Silene latifolia (Caryophyllaceae). II. Response to sex-specific selection. Evolution 48: 939–951.Google Scholar
  37. Mendel, G., 1870. Gregor Mendel's letters to Carl Nägeli: 1866–1873 in The Origin of Genetics: A Mendel Sourcebook, edited by C. Stern & E.R. Sherwood. 1966. W.H. Freeman, San Francisco.Google Scholar
  38. Mercot, H., A. Atlan, M. Jaques & C. Monchamp-Moureau, 1995. Sex-ratio distortion in Drosophila simulans-co-occurrence of a meiotic drive and a suppressor of drive. J. Evolution Biol. 8: 283–300.Google Scholar
  39. Montchamp-Moreau, C., V. Ginhoux & A. Atlan, 2001. The Y chromosomes of Drosophila simulans are highly polymorphic for their ability to suppress sex-ratio drive. Evolution 55: 728–737.Google Scholar
  40. Mulcahy, D.L., 1967. Optimal sex ratio in Silene alba. Heredity 22: 411–423.Google Scholar
  41. van Nigtevecht, G., 1966. Genetic studies of Melandrium. I. Sexlinked and sex-influenced inheritance in Melandrium album and Melandrium dioicum. Genetica 37: 281–306.Google Scholar
  42. Ono, T., 1939. Polyploidy and sex determination in Melandrium. Bot. Mag. 53: 549–556.Google Scholar
  43. Policansky, D. & J. Ellison, 1970. 'Sex ratio' in Drosophila pseudoobscura: spermatogenic failure. Science 169: 888–889.Google Scholar
  44. Presgraves, D.C., E. Severnece & G.S. Wilkinson, 1997. Sexchromosome meiotic drive in stalk-eyed flies. Genetics 147: 1169–1180.Google Scholar
  45. Purrington, C.B. & J. Schmitt, 1995. Sexual dimorphism of dormancy and survivorship in buried seeds of Silene latifolia. J. Ecol. 83: 795–800.Google Scholar
  46. Rick, C.M., 1966. Abortion of male and female gametes in the tomato determined by allelic interactions. Genetics 53: 85–96.Google Scholar
  47. Sandler, L. & E. Novitski, 1957. Meiotic drive as an evolutionary force. Am. Nat. 91: 105–110.Google Scholar
  48. Sano, Y., 1990. The genic nature of gamete eliminator in rice. Genetics 125: 183–191.Google Scholar
  49. Shull, G.H., 1914. Sex limited inheritance in Lychnis dioica. Z.I.A.V. 12: 265–302.Google Scholar
  50. Silver, L.M., 1985. Mouse t haplotypes. Annu. Rev. Genet. 19: 179–208.Google Scholar
  51. Silver, L.M., 1993. The peculiar journey of a selfish chromosome: mouse t-haplotypes and meiotic drive. Trends Genet. 9: 250–254.Google Scholar
  52. Taylor, D.R., 1994a. The genetic basis of sex ratio in Silene alba (=S. latifolia). Genetics 136: 641–651.Google Scholar
  53. Taylor, D.R., 1994b. Sex ratio in hybrids between Silene alba and Silene dioica: evidence for Y-linked restorers. Heredity 73: 518–526.Google Scholar
  54. Taylor, D.R., 1996. Parental investment and offspring sex ratios in the dioecious plant Silene alba (=S. latifolia). Am. Nat. 147: 870–879.Google Scholar
  55. Taylor, D.R., 1999. Genetics of sex ratio variation among natural populations of a dioecious plant. Evolution 53: 55–62.Google Scholar
  56. Taylor, D.R., M.J. Saur & E. Adams, 1999. Variation in pollen performance and its consequences for sex ratio evolution in a dioecious plant. Evolution 53: 1028–1036.Google Scholar
  57. Temin, R.G., B. Ganetzky, P.A. Powers, T.W. Lyttle, S. Pimpinelli, P. Dimitri, C.-I.Wu & Y. Hiraizumi, 1991. Segregation distortion in Drosophila melanogaster: genetic and molecular analyses. Am. Nat. 137: 287–331.Google Scholar
  58. Thrall, P.H. & A.M. Jarosz, 1994a. Host-pathogen dynamics in experimental populations of Silene alba and Ustilago violacea. 1. Ecological and genetic determinants of disease spread. J. Ecol. 82: 549–559.Google Scholar
  59. Thrall, P.H. & A.M. Jarosz, 1994b. Host-pathogen dynamics in experimental populations of Silene alba and Ustilago violacea. II. Experimental tests of theoretical models. J. Ecol. 82: 561–570.Google Scholar
  60. Turner, B.C. & D.D. Perkins, 1991. Meiotic drive in Neurospora and other fungi. Am. Nat. 137: 416–429.Google Scholar
  61. de Villena, F.P.-M. & C. Sapienza, 2001. Female meiosis drives karyotypic evolution in mammals. Genetics 159: 1179–1189.Google Scholar
  62. Warmke, H.E., 1946. Sex determination and sex balance in Melandrium. Am. J. Bot. 33: 648–660.Google Scholar
  63. Werren, J.H. & L.W. Beukeboom, 1998. Sex determination, sex ratios, and genetic conflict. Annu. Rev. Ecol. Syst. 29: 233–261.Google Scholar
  64. Westergaard, M., 1958. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9: 217–281.Google Scholar
  65. Wilkinson, G.S. & C.L. Fry, 2001. Meiotic drive alters sperm competitive ability in stalk-eyed flies. Proc. Roy. Soc. Lond. B268: 2559–2564.Google Scholar
  66. Winge, O., 1931. X-and Y-linked inheritance in Melandrium. Hereditas 15: 127–165.Google Scholar
  67. Wood, R.J. & M.E. Newton, 1991. Sex-ratio distortion caused by meiotic drive in mosquitoes. Am. Nat. 137: 379–391.Google Scholar
  68. Wu, C.-I., 1983. Virility deficiency and the sex-ratio trait in Drosophila pseudoobscura. I. Sperm displacement and sexual selection. Genetics 105: 651–662.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Douglas R. Taylor
    • 1
  • Pär K. Ingvarsson
    • 1
  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations