Journal of Thermal Analysis and Calorimetry

, Volume 70, Issue 3, pp 975–983 | Cite as

Thermodynamic properties of liquid Al-Si and Al-Cu alloys

  • D. S. Kanibolotsky
  • O. A. Bieloborodova
  • N. V. Kotova
  • V. V. Lisnyak


The partial and integral enthalpies of mixing in liquid Al-Si and Al-Cu alloys were determined by high-temperature isoperibolic calorimetry at 1750±5 and 1590±5, respectively. The thermodynamic properties of Al-Si melts were also studied by electromotive force method in temperature range 950-1270 K. The partial and integral excess Gibbs free energies of mixing in liquid Al-Si and Al-Cu alloys were also calculated from literature data on thermodynamic activity of aluminium. The comparison of our experimental results with literature data has been performed.

calorimetry Al-Cu electromotive force method liquid alloys thermodynamics Al-Si electrochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Körber, W. Oelsen and H. Lihtenberg, Mitt. KWI Eisenforschung Düsseldorf, 19 (1937) 131.Google Scholar
  2. 2.
    G. I. Batalin, E. A. Beloborodova, A. N. Shlapak, I. V. Nikolaenko and V. P. Kurach, Zh. Fiz. Khimii, 55 (1981) 1580.Google Scholar
  3. 3.
    J. P. Bros, H. Eslami and P. Gaune, Ber. Bunsenges, 85 (1981) 333.Google Scholar
  4. 4.
    N. V. Gizenko, B. I. Eimlin, S. N. Kilesso, M. I. Gasik and A. L. Zavialov, Izv. Akad. Nauk USSR. Metally, 1 (1983) 33.Google Scholar
  5. 5.
    V. S. Sudavtzova, G. I. Batalin and V. S. Tutevich, Ukr. Khim. Zh., 52 (1986) 1029.Google Scholar
  6. 6.
    Yu. O. Yesin, E. L. Demina, S. E. Demin and P. S. Popel, Zh. Fiz. Khimii, 60 (1986) 1791.Google Scholar
  7. 7.
    A. N. Chichko, V. F. Sobolev and N. P. Yurkevich, Teplofiz. Vys. Temp., 34 (1996) 155.Google Scholar
  8. 8.
    S. C. Schaefer and N. A. Gokcen, High Temp. Science, 11 (1979) 31.Google Scholar
  9. 9.
    M. Bonnet, J. Rogez and R. Castanet, Thermochim. Acta, 155 (1989) 39.CrossRefGoogle Scholar
  10. 10.
    H. Mitani and H. Nagai, J. Jpn. Inst. Met., 31 (1967) 1296.Google Scholar
  11. 11.
    C. Chatillon and M. Allibert, High Temp.-High Pres., 7 (1975) 583.Google Scholar
  12. 12.
    K. Itagaki and A. Yazawa, J. Jpn. Inst. Met., 35 (1971) 383.Google Scholar
  13. 13.
    V. M. Sandakov, Yu.O. Yesin, P. V. Geld and V. D. Shantarin, Zh. Fiz. Khimii, 45 (1971) 2030.Google Scholar
  14. 14.
    G. I. Batalin and V. I. Scherbakov, Ukr. Khim Zh., 37 (1971) 397.Google Scholar
  15. 15.
    N. V. Gizenko, S. N. Kilesso, B. I. Eimlin and A. L. Zavialov, Izv. Vuzov. Tsvet. Met., 3 (1983) 39.Google Scholar
  16. 16.
    U. K. Stolz, I. Arpshofen, F. Sommer and B. Predel, J. Phase Equilibria., 14 (1993) 473.Google Scholar
  17. 17.
    T. C. Wilder, Trans. Metall. Soc. AIME, 233 (1965) 1202.Google Scholar
  18. 18.
    G. I. Batalin, E. A. Beloborodova and V. N. Vasilyev, Ukr. Khim Zh., 38 (1972) 920.Google Scholar
  19. 19.
    Tan Dang Van, L. Segers and R. Winand, J. Electrochem. Soc., 141 (1994) 927.CrossRefGoogle Scholar
  20. 20.
    H. Mitani and H. Nagai, J. Japan. Inst. Met., 33 (1969) 344.Google Scholar
  21. 21.
    J. Perakis, C. Chatillon and A. Pattoret, Compt. Rend. Acad. Sci. Paris, Sér. C., 276 (1973) 1513.Google Scholar
  22. 22.
    D. I. Lainer, L. M. Ostrovskaya and O. S. Serebriannikova, Metally, 1 (1976) 15.Google Scholar
  23. 23.
    D. S. Kanibolotsky, O. A. Bieloborodova, N. V. Kotova and V. V. Lisnyak, J. Therm. Anal. Cal., 2002 submitted.Google Scholar
  24. 24.
    B. Massalski Binary Alloy Phase Diagrams American Society for Metals, Metal Park, Ohio 1990.Google Scholar
  25. 25.
    K. S. Vahvaselka, Phys. Stat. Sol. A., 83 (1984) 112.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2002

Authors and Affiliations

  • D. S. Kanibolotsky
    • 1
  • O. A. Bieloborodova
    • 1
  • N. V. Kotova
    • 1
  • V. V. Lisnyak
    • 1
  1. 1.Taras Shevchenko UniversityKievUkraine

Personalised recommendations