Advertisement

Russian Journal of Developmental Biology

, Volume 34, Issue 1, pp 1–13 | Cite as

History of Modern Chromosomal Analysis. Differential Staining of Plant Chromosomes

  • N. V. Zoshchuk
  • E. D. Badaeva
  • A. V. Zelenin
Article

Abstract

Differential staining methods found extensive use in karyotype studies of many plant and animal species and provide for reliable identification of all chromosomes of the organism. Below we describe the most widespread methods and history of their advent. In addition, we discuss specific structure of the chromosomes and possible mechanisms responsible for differential segmentation.

differential staining karyotype mechanisms of differential segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, L.K., Stack, S.M., and Mitchell, J.B., An Investigation of the Basis of Current Hypothesis for the Lack of G-Banding in Plant Chromosomes, Exp. Cell Res., 1982, vol. 138, pp. 433-436.Google Scholar
  2. Arrighi, F.E. and Hsu, T.T., Localization of Heterochromatin in Human Chromosomes, Cytogenetics, 1971, vol. 10, pp. 81-86.Google Scholar
  3. Arrighi, F.E. and Hsu, T.C., Staining Constitutive Heterochromatin and Giemsa Crossbands of Mammalian Chromosomes, Human Chromosome Methodology, Yunis, J.J., Ed., New York: Academic, 1974, pp. 59-71.Google Scholar
  4. Badaev, N.S., Badaeva, E.D., Bol'sheva, N.L., and Zelenin, A.V., Chromosome Identification of A-and D-Genomes in Wheat Using Replacements and Rearrangements between Homologs of Wheat and Triticale, Dokl. Akad. Nauk SSSR, 1983, vol. 273, pp. 994-996.Google Scholar
  5. Badaev, N.S., Badaeva, E.D., Bolsheva, N.L., et al., Cytogenetic Analysis of Forms Produced by Crossing Hexaploid Triticale with Common Wheat, Theor. Appl. Genet., 1985, vol. 70, pp. 536-541.Google Scholar
  6. Badaeva, E.D., Karyotype Analysis in Studying the Origin of B-and G-Genomes of Polyploid Wheats, Biol. Membr., 2001, vol. 18, no. 3, pp. 216-229.Google Scholar
  7. Badaeva, E.D., Badaev, N.S., Gill, B.S., and Filatenko, A.A., Intraspecific Karyotype Divergence in Triticum araraticum, Plant Syst. Evol., 1994, vol. 192, no. 1, pp. 117-145.Google Scholar
  8. Badaeva, E.D., Friebe, B., and Gill, B.S., Genome Differentiation in Aegilops. 1. Distribution of Higly Repetitive DNA Sequences on Chromosome of Diploid Species, Genome, 1996, vol. 39, no. 2, pp. 293-306.Google Scholar
  9. Bennett, M.D., Plant Genome Values: How Much Do We Know?, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 2011-2016.Google Scholar
  10. Bhatt, B., Burns, J., Flannery, D., and McGee, O'D., Direct Visualization of Single Copy Genes on Banded Metaphase Chromosomes by Nonisotopic in situ Hybridization, Nucleic Acids Res., 1988, vol. 16, pp. 3951-3961.Google Scholar
  11. Biggoigera, M., Fakan, S., Kaufmann, S.H., et al., Simultaneous Immunoelectron Microscopic Visualization of Protein B23 and C23 Distribution in the Hela Cell Nucleolus, J. Histochem., 1989, vol. 37, pp. 1371-1374.Google Scholar
  12. Biggiogera, M., Kaufmann, S.H., Shaper, J.H., et al., Distribution of Nucleolar Protein B23 and Nucleolin during Mouse Spermatogenesis, Chromosoma, 1991, vol. 100, pp. 162-165.Google Scholar
  13. Bol'sheva, N.L., Badaeva, E.D., Kurochkina, A.I., and Badaev, N.S., Comparison of Differentially Stained Chromosomes of Two Related Rye Forms, Genetika, 1984, vol. 20, no. 12, pp. 2025-2030.Google Scholar
  14. Bostok, K. and Samner, E., Khromosoma eukarioticheskoi kletki (Chromosome of Eukaryotic Cell), Moscow: Mir, 1981.Google Scholar
  15. Britten, R.J. and Kohne, D.E., Repeated Sequences in DNA, Science, 1968, vol. 161, pp. 529-540.Google Scholar
  16. Britten, R.J. and Kohne, D.E., Repeated Segments of DNA, Sci. Am., 1970, vol. 222, pp. 24-31.Google Scholar
  17. Callan, H.G., Heterochromatin in Triton, Proc. Royal Society, 1942, vol. 130, pp. 324-335.Google Scholar
  18. Caspersson, T., Farber, S., Foley, G.E., et al., Chemical Differentiation along Metaphase Chromosomes, Exp. Cell Res., 1968, vol. 49, pp. 219-222.Google Scholar
  19. Caspersson, T., Zech, L., Modest, E.J., et al., Chemical Differentiation with Fluorescent Alkylation Agents in Vicia faba Metaphase Chromosomes, Exp. Cell Res., 1969a, vol. 58, pp. 128-140.Google Scholar
  20. Caspersson, T., Zech, L., Modest, E.J., et al., DNA-Binding Fluorochromes for the Study of the Organization of the Metaphase Nucleus, Exp. Cell Res., 1969b, vol. 59, pp. 141- 152.Google Scholar
  21. Caspersson, T., Castleman, K.R., Lomakka, G., and Modest, E.J., Automatic Karyotyping of Quinacrine Mustard Stained Human Chromosomes, Exp. Cell Res., 1971, vol. 67, pp. 233-235.Google Scholar
  22. Caspersson, T., de la Chappelle, A., Schroder, J., et al., Quinacrine Fluorescence of Metaphase Chromosomes, Exp. Cell Res., 1972, vol. 72, pp. 56-59.Google Scholar
  23. Cermeno, M.C., Orellana, J., Santos, J.L., and Lacadena, J.R., Nucleolar Activity and Competition (Amphiplasty) in the Genus Aegilops, Heredity (USA), 1984, vol. 52, pp. 603-611.Google Scholar
  24. Cermeno, M.C., Friebe, B., Zeller, F.J., and Krolow., K.D., Nucleolar Competition in Different (A/B)(A/B)RR and DDRR Tetraploid Triticales, Heredity (USA), 1987, vol. 58, pp. 1-12.Google Scholar
  25. Chen, C.C., The Somatic Chromosomes of Maize, Can. J.?Genet. Cytol., 1969, vol. 11, pp. 752-754.Google Scholar
  26. Chennaveeraiah, M.S., Karyomorphologic and Cytotaxonomic Studies in Aegilops, Acta and Horti Gotob., 1960, vol. 23, pp. 85-186.Google Scholar
  27. Dagher-Kharrat, M.B., Grenier, G., Bariteau, M., et al., Karyotype Analysis Reveals Interspecific Differentiation in the Genus Cedrus despite Genome Size and Base Composition Constancy, Theor. Appl. Genet., 2001, vol. 103, pp. 846-854.Google Scholar
  28. Darlington, C.D. and La Cour, L., Nucleic Acid Starvation in Chromosomes of Trillium, J. Genet., 1940, vol. 5, pp. 547-562.Google Scholar
  29. Darlington, C.D. and La Cour, L.F., Chromosome Breakage and the Nucleic Acid Cycle (Trillium, Tradescantia, Vicia), J. Genet., 1945, vol. 46, pp. 180-267.Google Scholar
  30. Doudrick, R.L., Heslop-Harrison, J.S., Nelson, C.D., et al., Karyotype of Slash Pine (Pinus elliottii var. elliottii) Using Patterns of Fluorescence in situ Hybridization and Fluorochrome Banding, J. Hered., 1995, vol. 86, pp. 289-296.Google Scholar
  31. Drewry, A., G-Banded Chromosomes in Pinus resinosa, J. Hered., 1982, vol. 73, pp. 305-306.Google Scholar
  32. Dubinin, N.P., Preface, in: Levitskii, G.A., Tsitologiya rastenii (Plant Cytology), Moscow: Nauka, 1976.Google Scholar
  33. Ellison, J.R. and Barr, H.J., Quinacrine Fluorescence of Specific Chromosome Regions, Cromosoma, 1972, vol. 36, pp. 375-390.Google Scholar
  34. Endo, T.R. and Gill, B.S., Identification of Wheat Chromosomes by N-Banding, Proc. 6th Int. Wheat Genet. Symp. Kyoto, Japan, 1983, pp. 355-362.Google Scholar
  35. Endo, T.R. and Gill, B.S., Somatic Karyotype, Heterochromatin Distribution, and Nature of Chromosome Differentiation in Common Wheat, Triticum aestivum L. em Thell., Chromosoma, 1984, vol. 89, pp. 361-369.Google Scholar
  36. Filion, W.G., Differential Gimsa Staining in Plants, Chromosoma, 1974, vol. 49, pp. 51-60.Google Scholar
  37. Filion, W.G. and Walden, D.B., Karyotype Analysis: the Detection of Chromosomal Alteration in the Somatic Karyotype of Zea mays L., Chromosoma, 1973, vol. 41, pp. 183-194.Google Scholar
  38. Flyaksberger, K.A., Crop Plants, Wheat, Kul'turnaya flora SSSR (Cultivated Flora of USSR), Vul'f, E.V., Ed., Moscow: Gos. Izd-vo Sovkh. i Kolkh. Lit-ry, 1935, vol. 1.Google Scholar
  39. Friebe, B., Selective Silver Staining of Nucleolar Organizer Regions in Vicia faba, Microscopica Acta, 1983, vol. 87, no.?1, pp. 49-52.Google Scholar
  40. Friebe, B. and Heun, M., C-Banding Pattern and Powery Mildew Resistance of Triticum ovatum and Four T. aestivum- T. ovatum Chromosome Addition Lines, Theor. Appl. Genet., 1989, vol. 78, no. 3, pp. 417-424.Google Scholar
  41. Friebe, B., Cermeno, M.C., and Zeller, F.J., C-Banding Polimorphism and the Analysis of Nucleolar Activity in Dasypyrum villosum (L.) Candardy, Its Added Chromosomes to Hexaploid Wheat, and the Amphiploid Triticum dicoccum- D. villosum, Theor. Appl. Genet., 1987, vol. 73, pp. 337-341.Google Scholar
  42. Friebe, B., Tuleen, N.A., and Gill, B.S., Development and Identification of a Set of Triticum aestivum-Aegilops geniculata Chromosome Addition Lines, Genome, 1999, vol. 42, no. 3, pp. 374-380.Google Scholar
  43. Fukui, K. and Iijima, K., Somatic Chromosome Map of Rice by Imaging Methods, Theor. Appl. Genet., 1991, vol. 81, pp. 589–596.Google Scholar
  44. Fukui, K., Minesawa, M., Kamisugi, Y., et al., Microdissection of Plant Chromosomes by Argon-Ion Laser Beam, Theor. Appl. Genet., 1992, vol. 84, pp. 787-791.Google Scholar
  45. Funaki, K., Matsui, S., and Sasaki, M., Location of Nucleolar Organizers in Animal and Plant Chromosomes by Means of an Improved N-Banding Technique, Chromosoma, 1975, vol. 49, no. 4, pp. 357-370.Google Scholar
  46. Gerlach, W.L., N-Banded Karyotypes of Wheat Species, Chromosoma, 1977, vol. 62, no. 1, pp. 49-56.Google Scholar
  47. Gill, B.S. and Friebe, B., Plant Cytogenetics at the Down of the 21st Century, Current Opinion Plant Biol, 1998, vol. 1, pp. 109–115.Google Scholar
  48. Gill, B.S. and Kimber, G., The Giemsa C-Banded Karyotype of Rye, Proc. Natl. Acad. Sci. USA, 1974a, vol. 71, no. 4, pp. 1247–1249.Google Scholar
  49. Gill, B.S. and Kimber, G., Giemsa C-Banding and the Evolution of Wheat, Proc. Natl. Acad. Sci. USA, 1974b, vol. 71, no. 10, pp. 4086-4090.Google Scholar
  50. Gill, K.S., Lubbers, E.L., Gill, B.S., et al., A Genetic Linkage Map of Triticum tauschii (DD) and Its Relationship to the D Genome of Bread Wheat (AABBDD), Genome, 1991a, vol. 34, pp. 362-374.Google Scholar
  51. Gill, B.S., Friebe, B., and Endo, T.R., Standard Karyotype and Nomenclature System for Description of Chromosome Bands and Structural Aberrations in Wheat (Triticum aestivum), Genome, 1991b, vol. 34, pp. 830-839.Google Scholar
  52. Global Biodiversity: Status of the Earth's Living Resources, London: Chapman-Hall, 1992.Google Scholar
  53. Goodpasture, C. and Bloom, S.E., Visualization of Nucleolar Organizer Regions in Mammalian Chromosomes Using Silver Staining, Chromosoma, 1975, vol. 53, pp. 37-50.Google Scholar
  54. Greilhuber, J., Why Plant Do Not Show G-Bands, Theor. Appl. Genet., 1977, vol. 50, pp. 121-124.Google Scholar
  55. Greilhuber, J. and Speta, F., Giemsa Karyotypes and Their Evolutionary Significanse in Scilla bifolia, S. drunensis, and S. vindobonensis (Liliaceaea), Plant Syst. Evol., 1977, vol. 127, pp. 171-190.Google Scholar
  56. Greilhuber, J. and Speta, F., Quantitative Analyses of C-Banded Karyotypes, and Systematics in the Cultivated Species of the Scilla siberica Group (Liliaceae), Plant Syst. Evol., 1978, vol. 129, pp. 63-109.Google Scholar
  57. Hadlaczky, G. and Kalman, L., Discrimination of Homologous Chromosomes of Maize with Giemsa Staining, Heredity, 1975, vol. 35, no. 3, pp. 371-374.Google Scholar
  58. Hatch, F.T., Bodner, A.J., Mazrimas, J.A., and Moore, D.H., Satellite DNA and Cytogenetic Evolution. DNA Quantity, Satellite DNA and Karyotypic Variation in Kangaroo Rats (Genus Dipodomys), Chromosoma, 1976, vol. 58, pp. 155-168.Google Scholar
  59. Heitz, E., Heterochromatin, Chromozentren, Chromomeren, Ber. Dt. Bot. Ges., 1929, vol. 47, pp. 247-284.Google Scholar
  60. Heitz, E., Der Bau der Somatischen Kerne Von Drosophila melanogaster, Ztschr. Indukt. Abstammungs Und Vererbungslehre, 1930, vol. 54, pp. 248-249.Google Scholar
  61. Heitz, E., Die Herkunft der Chromozentren, Planta, 1932, vol. 18, pp. 571-630.Google Scholar
  62. Heitz, E., Uber Total Und Partielle Somatische Heteropyknose bei Drosophila Funebis, Ztschr. Zellforsch., 1933a, vol. 19, pp. 720-742.Google Scholar
  63. Heitz, E., Die Somatische Heteropyknese bei Drosophila melanogaster und Ihre Genetische Bedeutung, Ztschr. Zellforsch., 1933b, vol. 20, pp. 237-287.Google Scholar
  64. Heslop-Harrison, J.S. and Schwarzacher, T., Genomics, Southern and in situ Hybridization for Plant Genome Analysis, Methods in Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Ration: CRC, 1996, pp. 163-179.Google Scholar
  65. Hizume, M., Sato, S., and Tanaka, A., A Highly Reproducible Method of Nucleolus Organizer Regions Staining in Plants, Stain Technol., 1980, vol. 55, pp. 87-94.Google Scholar
  66. Howell, W.M., Denton, T.E., and Diamond, J.R., Differential Staining of the Satellite Regions of Human Acrocentric Chromosomes, Experientia (Basel), 1975, vol. 31, pp. 260-262.Google Scholar
  67. Hsu, T.C., Pathak, S., and Shafer, D.A., Introduction of Chromosome Crossbanding by Treating Cell with Chemical Agents Before Fixation, Exp. Cell Res., 1973, vol. 79, pp. 484–487.Google Scholar
  68. Hutchinson, J. and Seal, A.G., A Sequential in situ Hybridization and C-Banding Technique, Heredity, 1983, vol. 51, pp. 507-509.Google Scholar
  69. Iijima, K., Kakeda, K., and Fukui, K., Identification and Characterization of Somatic Rice Chromosomes by Imaging Methods, Theor. Appl. Genet., 1991, vol. 81, pp. 597-605.Google Scholar
  70. Imai, H.T., Mutability of Constitutive Heterochromatin (C-Bands) during Eucaryotic Chromosomal Evolution and Their Cytological Meaning, Jpn. J. Genet., 1991, vol. 66, pp. 635-661.Google Scholar
  71. Inge-Vechtomov, S.G., Genetika s osnovami selektsii (Genetics and Fundamentals of Selection), Moscow: Vysshaya Shkola, 1989, p. 65.Google Scholar
  72. Iordansky, A.B., Zurabishvili, T.G., and Badaev, N.S., Linear Differentiation of Cereal Chromosomes. I. Common Wheat and Its Supposed Ancestors, Theor. Appl. Genet., 1978, vol. 51, pp. 145–152.Google Scholar
  73. Islam, A.K.M.R., Shepherd, K.W., and Sparrow, D.H.B., Isolation and Characterization of Euplasmic Wheat-Barley Chromosome Addition Lines, Heredity, 1981, vol. 46, pp. 161–174.Google Scholar
  74. Jewell, D.C., Chromosome Banding in Triticum aestivum Cv. Chinese Spring and Aegilops variabilis, Chromosoma, 1979, vol. 71, no. 1, pp. 129-134.Google Scholar
  75. Jewell, D.C., Recognition of Two Types of Positive Staining Chromosomal Material by Manipulation of Critical Steps in the N-Banding Technique, Stain Technol., 1981, vol. 56, pp. 227–234.Google Scholar
  76. Jiang, J. and Gill, B.S., Sequential Chromosome Banding and in situ Hybridization Analysis, Genome, 1993, vol. 36, pp. 792-795.Google Scholar
  77. Jiang, J. and Gill, B.S., New 18S-26S Ribosomal RNA Gene Loci: Chromosomal Landmarks for the Evolution of Polyploid Wheats, Chromosoma, 1994a, vol. 103, pp. 179-185.Google Scholar
  78. Jiang, J. and Gill, B.S., Different Species-Specific Chromosome Translocation in Triticum timipheevii and T. turgidum Support Diphyletic Origin of Polyploid Wheats, Chromosome Res., 1994b, vol. 2, pp. 59-64.Google Scholar
  79. Jiang, J. and Gill, B.S., Nonisotopic in situ Hybridization and Plant Genome Mapping: the First 10 Years, Genome, 1994c, vol. 37, no. 5, pp. 717-725.Google Scholar
  80. Jung, C., Claussen, U., Horsthemke, B., et al., A DNA Library from an Individual Beta patellaris Chromosome Conferring Nematode Resistance Obtained by Microdissection of Meiotic Metaphase Chromosome, Plant Mol. Biol., 1992, vol. 20, pp. 503-511.Google Scholar
  81. Kakeda, K., Fukui, K., and Yamagata, H., Heterochromatic Differentiation in Barley Chromosomes Revealed by C-and N-Banding Techniques, Theor. Appl. Genet., 1991, vol. 81, no. 2, pp. 144-150.Google Scholar
  82. Kihara, H., Uber Cytologische Studien bei Einigen Getreidearten. I. Species-Bastarde des Weizens und Weizenroggen-Bastarde, Bot. Mag. (Tokyo), 1919, vol. 33, pp. 17-38.Google Scholar
  83. Kihara, H., Cytologische und Genetische Studien bei Wichtigen Getreidearten mit Besonderer Rucksicht auf das Verhaten der Chromosomen und Die Sterilitat in den Bastarden, Kyoto: Imp. Univer., 1924, vol. 1.Google Scholar
  84. Kihara, H., Verwandtschaft fer Aegilops-Arten im Lichte der Genomanalyse. Ein Uberlich, Der Zuchter, 1940, vol. 12, no.?3, pp. 49-62.Google Scholar
  85. Kihara, H., The Genus Aegilops Classified on the Basis of Genome Analysis, Seiken Ziho, 1947, vol. 3, pp. 7-25.Google Scholar
  86. Kihara, H., Consideration on the Evolution and Distribution of Aegilops Species Based on the Analyser-Method, Cytologia, 1954, vol. 19, pp. 336-357.Google Scholar
  87. Kurabayashi, M., Effects of Post-Temperature Treatments upon the X-Ray Induced Chromosomal Aberrations, Cytologia, 1953, vol. 18, pp. 253-265.Google Scholar
  88. Kuwada, Y., A Cytological Study of Oryza sativa L., Bot. Mag. Tokyo, 1910, vol. 26, pp. 267-281.Google Scholar
  89. Lacadena, J.R. and Cermeno, M.C., Nucleolus Organizer Competition in Triticum aestivum-Aegilops umbellulata Chromosome Addition Lines, Theor. Appl. Genet., 1985, vol. 71, pp. 278-285.Google Scholar
  90. Lacadena, J.R., Cermeno, M.C., Orella, J., and Santos, J.L., Evidence for Wheat-Rye Nucleolar Competition (Amphiplasty) in Triticale by Silver Staining Procedure, Theor. Appl. Genet., 1984, vol. 67, pp. 207-212.Google Scholar
  91. Langer-Safer, P.R., Levine, M., and Ward, D.C., Immumological Method for Mapping Genes on Drosophila Polytene Chromosomes, Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 4381-4385.Google Scholar
  92. Langridge, W.H.R., O'Malley, T.A., and Wallace, H., Neutral Amphiplasty and Regulation of the Cell Cycle in Crepis Herbs, Proc. Natl. Acad. Sci. USA, 1970, vol. 67, no. 4, pp. 1894-1900.Google Scholar
  93. Lawrence, J.B., Singer, R.H., and McNeil, J.A., Interphase and Metaphase Resolution of Different Distances Within the Human Dystrophin Gene, Science, 1990, vol. 249, pp. 928-932.Google Scholar
  94. Le, H.T., Armstrong, K.C., and Miki, B., Detection of Rye DNA in Wheat–Rye Hybrids and Wheat Translocation Stocks Using Total Genomic DNA as a Probe, Plant Mol. Biol. Rep., 1989, vol. 7, pp. 150-158.Google Scholar
  95. Levitskii, G.A., Chromosome Morphology, Tr. po prikl. botanike, genetike i selektsii rastenii, 1931a, vol. 27, no. 1, pp. 20–174.Google Scholar
  96. Levitskii, G.A., Chromosome Morphology and “Karyotype” Notion in Taxonomy, Tr. po prikl. botanike, genetike i selektsii rastenii, 1931b, pp. 187-240.Google Scholar
  97. Levitskii, G.A., Tsitologiya rastenii (Plant Cytology), Moscow: Nauka, 1976.Google Scholar
  98. Levitskii, G.A. and Kuz'mina, N.E., Karyological Method in Taxonomy and Phylogenetics of Festusa Genus, Tr. po prikl. botanike, genetike i selektsii rastenii, 1927, vol. 17, no. 3, pp. 12-57, no. 17.Google Scholar
  99. Levitskii, G.A. and Araratyan, A.G., Chromosome Tranformations Induced by X-Rays, Tr. po prikl. botanike, genetike i selektsii rastenii, 1931, vol. 27, no. 1, pp. 175-186.Google Scholar
  100. Lichter, P., Tang, C.-J.C., Call, K., et al., High-Resolution Mapping of Human Chromosome 11 By in situ Hybridization with Cosmid Clones, Science, 1990, vol. 247, pp. 64-69.Google Scholar
  101. Lilienfeld, F.A., H. Kihara: Genome-Analysis in Triticum and Aegilops. X. Concluding Review, Cytologia, 1951, vol. 16, pp. 101-123.Google Scholar
  102. Linde-Laursen, I., Cytology and Cytogenetics of Hordeum vulgare and Some Allied Species Using Chromosome Banding Technique. Riso R-529. Riso National Laboratory, Denmark, 1985.Google Scholar
  103. Linde-Laursen, I. and von Bothmer, R., Giemsa C-Banding in Two Polyploid, South American Hordeum Species, H. tetraploidum and H. lechleri, and Their Aneuploid Hybrids with H. vulgare, Hereditas, 1986a, vol. 105, no. 2, pp. 171-178.Google Scholar
  104. Linde-Laursen, I., Ibsen, E., von Bothmer, R., and Giese, H., Physical Location of Active and Inactive rRNA Gene Loci in Hordeum marinum spp. gussoneanum (4?) by in situ Hybridization, Genome, 1992, vol. 35, p. 1032.Google Scholar
  105. Linde-Laursen, I., von Bothmer, R., and Jacobsen, N., Giemsa C-Banded Karyotypes of H. secalinum, H. capense and Their Interspecific Hybrids with H. vulgare, Hereditas, 1986b, vol. 105, no. 2, pp. 179-186.Google Scholar
  106. Linde-Laursen, I., von Bothmer, R., and Jacobsen, N., Giemsa C-Banded Karyotypes of South American Hordeum (Poaceae). I. 14 Diploid Taxa, Hereditas, 1989, vol. 110, no. 3, pp. 289-305.Google Scholar
  107. MacPherson, P. and Filion, W.G., Karyotype Analysis and the Distribution of Constitutive Heterochromatin in Five Species of Pinus, J. Hered., 1981, vol. 72, pp. 193-198.Google Scholar
  108. Matsui, S.-I., Nucleolus Organizer of Vicia faba Chromosomes Revealed by the N-Banding Technique, Jpn. J. Genet., 1974, vol. 49, no. 2, pp. 93-96.Google Scholar
  109. Matsui, S. and Sasaki, M., Differential Staining of Nucleolus Organizers in Mammalian Chromosomes, Nature, 1973, vol. 246, pp. 148-159.Google Scholar
  110. McClintock, B., Chromosome Morphology in Zea mays, Science, 1929, vol. 69, p. 629.Google Scholar
  111. McNeil, J.A., Johnson, C.V., Carter, K.C., et al., Localizing DNA and RNA within Nuclei and Chromosomes by Fluorescence in situ Hybridization, Genet. Anal. Tech. Appl. 1991, vol. 8, pp. 41-58.Google Scholar
  112. Mukai, Y., Muilticilor Fluorescence in situ Hybridization: a New Tool for Genome Analysis, Methods of Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Ration: CRC, 1996, pp. 181-192.Google Scholar
  113. Müller, H.J. and Painter, T., The Differntiation of the Sex Chromosome of Drosophila into Genetically Active and Inert Regions, Ztschridukt. Abstammungs und Vererbungslehre, 1932, vol. 62, pp. 316-365.Google Scholar
  114. Muravenko, O.V., Fedotov, A.R., Punina, E.O., et al., Comparison of Chromosome BrdU-Hoechst-Giemsa Banding Patterns of the A1 and (AD)2 Genomes of Cotton, Genome, 1998a, vol. 41, pp. 616-625.Google Scholar
  115. Muravenko, O.V., Samatadze, T.E., and Zelenin, A.V., Computer and Visual Analysis of G-like Banding Pattern of Wild Camomile Chromosomes, Biol. Membr., 1998b, vol. 15, no.?6, pp. 670-678.Google Scholar
  116. Navashin, S.G., On Nucleus Dimorphism in Somatic Cells of Galtonia candicans, Izv. Imperat. akad. Nauk, 1912, vol. 6, no. 4, pp. 373-385.Google Scholar
  117. Navashin, S.G., Sbornik statei, posvyashchennyi K.A. Timiryazevu (Collected Articles Devoted to K.A. Timiryazev), Moscow: Tip. I.N. Kushnereva i K o, 1916, pp. 185-214.Google Scholar
  118. Ochs, R.L. and Busch, H., Futher Evidence That Phosphoprotein C23 (110kDa/pl 5.1) Is the Nucleolar Silver Staining Protein, Exp. Cell Res., 1984, vol. 152, pp. 250-256.Google Scholar
  119. Okamoto, M., Identification of the Chromosomes of Common Wheat Belonging to the A and B Genomes, Can. J.?Genet. Cytol., 1962, vol. 4, pp. 31-37.Google Scholar
  120. Orellana, J., Santos, J.L., Lacadena, J.R., and Cermeno, M.C., Nucleolar Competition Analysis in Aegilops ventricosa and Its Amphiploid with Tetraploid Wheats and Diploid Rye by the Silver Staining Procedure, Can. J. Genet. Cytol., 1984, vol. 26, pp. 34-39.Google Scholar
  121. Pardue, M.L. and Gall, J.G., Chromosomal Localization of Mouse Satellite DNA, Science, 1970, vol. 168, pp. 1356- 1358.Google Scholar
  122. Paris Conference: Standardization in Human Cytogenetics, New York: The National Foundation, 1971, vol. VIII, no. 7.Google Scholar
  123. Pinkel, D., Straume, T., and Gray, J.W., Cytogenetic Analysis Using Quantitative, Highsensitivity, Fluorescence in situ Hybridization, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 2943-2938.Google Scholar
  124. Ponelies, N., Stein, N., and Weber, G., Microamplification of Specific Chromosome Sequences; An Improved Method for Genome Analysis, Nucleic Acids Res., 1997, vol. 25, no. 17, pp. 3555-3557.Google Scholar
  125. Prokof'eva-Bel'govskaya, A.A., Geterokhromaticheskie raiony khromosom (Heterochromatic Chromosome Regions), Moscow: Nauka, 1986.Google Scholar
  126. Rodionov, A.V., Punina, E.O., and Chupov, V.S., Evolution of the Modular Structure of Plant Chromosomes, Biol. Membr., 2001, vol. 18, no. 3, pp. 240-248.Google Scholar
  127. Rodova, M.A., Zoshchuk, S.A., Barskii, V.E., et al., DNA Amplification from Microdissected 5BLdel Chromosome, Genetika, 1995, vol. 31, no. 7, pp. 1016-1020.Google Scholar
  128. Santos, J.L., Lacadena, J.R., Cermeno, M.C., and Orella, J., Nucleolar Organizer Activity in Wheat-Barley Chromosome Addition Lines, Heredity, 1984, vol. 52, pp. 425-429.Google Scholar
  129. Sato, S., Hizume, M., and Kawamura, S., Relationship Between Secondary Constrictions and Nucleolus Organizer Regions in Allium sativum Chromosomes, Protoplasma, 1980, vol. 105, pp. 77-85.Google Scholar
  130. Savchenko, E.K., Badaeva, E.D., and Boiko, E.V., et al., Karyotipe Analysis of Various Maize Genotypes, Genetika, 1986, vol. 22, no. 1, pp. 95-101.Google Scholar
  131. Schlegel, R. and Gill, B.S., N-Banding Analysis of Rye Chromosomes and the Relationship between N-Banded and C-Banded Heterochromatin, Can. J. Genet. Cytol., 1984, vol. 26, no. 6, pp. 765-769.Google Scholar
  132. Schondelmaier, J., Martin, R., Jahoor, A., et al., Microdissection and Microcloning of the Barley (Hordeum vulgare L.) Chromosome 1HS, Theor. Appl. Genet., 1993, vol. 86, pp. 629-636.Google Scholar
  133. Schubert, I. and Kunzel, G., Position-Dependent NOR Activity in Barley, Cromosoma, 1990, vol. 99, p. 352.Google Scholar
  134. Schubert, I., Anastassova-Kristeva, M., and Rieger, R., Specificity of NOR Staining in Vicia faba, Exp. Cell Res., 1979, vol. 120, pp. 433-435.Google Scholar
  135. Schwarzacher, H.G., Chromosomes in Mitosis and Interphase, Heidelberg: Springer, 1976.Google Scholar
  136. Schwarzacher, T., Leitch, A.R., Bennett, M.D., and Heslop-Harrison, J.S., In situ Localization of Parental Genomes in a Wide Hybrid, Ann. Bot. (London), 1989, vol. 64, pp. 315-324.Google Scholar
  137. Schweizer, D., Differential Staining of Plant Chromosomes with Giemsa, Chromosoma, 1973, vol. 40, pp. 307-320.Google Scholar
  138. Schweizer, D., Reverse Fluorescent Chromosome Banding with Chromomycin and DAPI, Chromosoma, 1976, vol. 58, pp. 307-324.Google Scholar
  139. Senyaninova-Korchagina, M.V., Karyotaxonomic Investigation of Aegilops L. Genus, Tr. prikl. botanike, genetike i selektsii rastenii, 1932, vol. 2, no. 1, pp. 1-90.Google Scholar
  140. Sharma, N.P. and Natarajan, A.T., Identification of Heterochromatic Regions in the Chromosomes of Rye, Hereditas, 1973, vol. 74, pp. 233-238.Google Scholar
  141. Shchapova, A.I., Differential Staining of Plant Chromsomes. 1. Secale cereale L., Tsitologiya, 1974, no. 16, pp. 370-372.Google Scholar
  142. Singh, R.J. and Tsuchia, T., Identification and Designation of Telocentric Chromosomes in Barley by Means of Giemsa N-Banding Technique, Theor. Appl. Genet., 1982, vol.64, no. 1, pp. 13-24.Google Scholar
  143. Sorokina, O.N., On the Chromosomes of Aegilops Species, At. Energ., 1928, vol. 2, no. 19, pp. 523-532.Google Scholar
  144. Stocker, A.J., Fresquez, C., and Lentzios, G., Banding Studies on Polytene Chromosomes of Rhynchosciara hollaenderi, Chromosoma, 1978, vol. 68, pp. 337-356.Google Scholar
  145. Sumner, A.T., A Simple Technique for Demonstrating Centromeric Heterochromatin, Exp. Cell Res., 1972, vol. 75, pp. 304-306.Google Scholar
  146. Sumner, A.T., Evans, H.J., and Buckland, R.A., New Technique for Distinguishing between Human Chromosomes, Nature New Biol., 1971, vol. 232, pp. 31-32.Google Scholar
  147. Szabo, P. and Ward, D.C., What's New with Hybridization in situ?, Trends Biochem. Sci., 1982, no. 12, pp. 425-427.Google Scholar
  148. Varley, J.M. and Morgan, G.T., Silver Staining of Lampbrush Chromosomes of Triturus cristatus carnifex, Chromosoma, 1978, vol. 67, pp. 233-244.Google Scholar
  149. Vavilov, N.I., Scientific Basis of Plant Selection, Teoreticheskie osnovy selektsii rastenii (Theoretic Basis of Plant Selection), Moscow: Sel'khozgiz, 1935, vol. 2, pp. 3-244.Google Scholar
  150. Vosa, C.G., Heterochromatin Recognition with Fluorochromes, Chromosoma, 1970, vol. 30, pp. 366-372.Google Scholar
  151. Vosa, C.G. and Marchi, P., Quanacrine Fluorescence and Giemsa Staining in Plant, Nature New Biology, 1972, vol.237, pp. 191-192.Google Scholar
  152. Wang, H.C. and Kao, K.N., G-Banding in Plant Chromosomes, Genome, 1988, vol. 30, pp. 48-51.Google Scholar
  153. Weisblum, B. and De Haseth, P., Quinacrine—a Chromosome Stain Specific for Deoxyadenylate-Deoxythymidylate-Rich Regions in DNA, Proc. Natl. Acad. Sci. USA, 1972, vol. 69, pp. 629-632.Google Scholar
  154. Wiegant, J., Ried, T., Nederlof, R.M., et al., In situ Hybridization with Fluoresceinated DNA, Nucleic Acids Res., 1991, vol. 19, pp. 3237-3241.Google Scholar
  155. Zakharov, A.F., Benyush, V.A., Kuleshov, N.P., and Baranovskaya, L.I., Khromosomy cheloveka. Atlas (Human Chromosomes. Atlas), Moscow: Meditsyna, 1982.Google Scholar
  156. Zelenin, A.V. and Zoshchuk, N.V., History of Contemporary Chromosome Analysis: The Fundamental Contribution of Caspersson's Works, Ontogenez, 2000, vol. 31, no. 2, pp. 152-160.Google Scholar
  157. Zelenin, A.V., Badaeva, E.D., and Badaev, N.S., Karyotype Analysis of Cereals. Theoretic and Applied Assays, Genetika, 1987, vol. 23, no. 10, pp. 1749-1761.Google Scholar
  158. Zelenin, A.V., Badaeva, E.D., and Muravenko, O.V., Introduction to Plant Genomics, Molekulyarn. biologiya, 2001, vol. 35, no. 3, pp. 339-348.Google Scholar
  159. Zhou, Y., Hu, J., Dang, B., et al., Microdissection and Microcloning of Rye (Secale cereale L.) Chromosome 1R, Chromosoma, 1999, vol. 108, pp. 250-255.Google Scholar
  160. Zurabishvili, T.G., Iordanskii, A.B., and Badaev, N.S., Polykaryogram Assay for Chromosome Differential Staining Studies of Triticum aestivum L., Dokl. Akad. Nauk SSSR, 1974, vol. 218, no. 1, pp. 207-210.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • N. V. Zoshchuk
    • 1
  • E. D. Badaeva
    • 1
  • A. V. Zelenin
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations